Feature-specific vector quantization of images
by ,
Abstract:
A new interband vector quantization of a human vision-based image representation is presented. The feature specific vector quantizer (FVQ) is suited for data compression beyond second-order decorrelation. The scheme is derived from statistical investigations of natural images and the processing principles of biological vision systems, the initial stage of the coding algorithm is a hierarchical, and orientation-selective, analytic bandpass decomposition, realized by even- and odd-symmetric filter pairs that are modeled after the simple cells of the visual cortex. The outputs of each even- and odd-symmetric filter pair are interpreted as real and imaginary parts of an analytic bandpass signal, which is transformed into a local amplitude and a local phase component according to the operation of cortical complex cells. Feature-specific multidimensional vector quantization is realized by combining the amplitude/phase samples of all orientation filters of one resolution layer. The resulting vectors are suited for a classification of the local image features with respect to their intrinsic dimensionality, and enable the exploitation of higher order statistical dependencies between the subbands. This final step is closely related to the operation of cortical hypercomplex or end-stopped cells. The codebook design is based on statistical as well as psychophysical and neurophysiological considerations, and avoids the common shortcomings of perceptually implausible mathematical error criteria. The resulting perceptual quality of compressed images is superior to that obtained with standard vector quantizers of comparable complexity.
Reference:
Feature-specific vector quantization of images (B. Wegmann, C. Zetzsche), In IEEE Transactions on Image Processing, Institute of Electrical & Electronics Engineers (IEEE), volume 5, 1996.
Bibtex Entry:
@Article{Wegmann1996,
  author    = {B. Wegmann and C. Zetzsche},
  title     = {Feature-specific vector quantization of images},
  journal   = {{IEEE} Transactions on Image Processing},
  year      = {1996},
  volume    = {5},
  number    = {2},
  pages     = {274--288},
  abstract  = {A new interband vector quantization of a human vision-based image representation is presented. The feature specific vector quantizer (FVQ) is suited for data compression beyond second-order decorrelation. The scheme is derived from statistical investigations of natural images and the processing principles of biological vision systems, the initial stage of the coding algorithm is a hierarchical, and orientation-selective, analytic bandpass decomposition, realized by even- and odd-symmetric filter pairs that are modeled after the simple cells of the visual cortex. The outputs of each even- and odd-symmetric filter pair are interpreted as real and imaginary parts of an analytic bandpass signal, which is transformed into a local amplitude and a local phase component according to the operation of cortical complex cells. Feature-specific multidimensional vector quantization is realized by combining the amplitude/phase samples of all orientation filters of one resolution layer. The resulting vectors are suited for a classification of the local image features with respect to their intrinsic dimensionality, and enable the exploitation of higher order statistical dependencies between the subbands. This final step is closely related to the operation of cortical hypercomplex or end-stopped cells. The codebook design is based on statistical as well as psychophysical and neurophysiological considerations, and avoids the common shortcomings of perceptually implausible mathematical error criteria. The resulting perceptual quality of compressed images is superior to that obtained with standard vector quantizers of comparable complexity.},
  doi       = {10.1109/83.480763},
  publisher = {Institute of Electrical {\&} Electronics Engineers ({IEEE})},
  url       = {10.1109/83.480763">http://dx.doi.org/10.1109/83.480763},
}