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Abstract

The human visual system served as inspiration to many approaches in computer vision. The
ability of the human visual system to spot, track and recognize objects in still and moving
pictures is yet unmatched by computer systems. Pattern recognition is one of the major fields
of application in computer vision. This thesis sheds light on three different perspectives how
biologically inspired pattern recognition can be realized.

The first is a direct transfer of properties of neurons in the primary visual cortex (V1)
to computational models. To set the ground for models predicting responses of V1 neurons,
these properties and known effects will be introduced briefly. The individual components
contributing to a human visual system (HVS) model will be considered next. Such models
are suited for low level pattern recognition, e.g., gratings or primitive shapes. It will be shown
how such a model can predict the perception of streak distortions and their subjective assess-
ment by human observers. Streak distortion are generated by offset printing machines almost
inevitably. The purpose of this model is the evaluation of offset printing machines with regard
to the occurrence of this class of distortions. Furthermore, the computations of the frequency
distribution as well as the auto- and cross-correlation functions in a neurobiologically plau-
sible way via the gain control function attributed to neurons in the visual pathway will also
be presented.

The second perspective is given by neural networks. This is a connectionist approach of
realizing computational models with simple but highly connected units. Neural networks,
inspired by the structure of the brain, represent a very simplified view on the brain. For
pattern recognition they have shown to be perform extremely well, especially in the form of
convolutional neural networks (CNN). They are suited for complex recognition tasks, e.g.,
object, scene or activity recognition. The approaches covered in this thesis are multimodal
convolutional neural networks for human activity recognition (HAR). The focus will be on
the comparison of the fusion strategies, namely early and late fusion. The human activity
recognition model is used for automatic annotation of data recorded from humans. It serves
as part of a pipeline which aims at transferring human knowledge about everyday activities
to a robot.

The third perspective is covered by processing of sensorimotor representations. Those are
pairs of sensory information and motor actions. In the vision domain saccadic eye movements
are an example for sensorimotor processing, but it can be applied to all modalities of human
sensory perception. The computational models covered in this thesis are applied to visual
perception and localization in a spatial environment. The inference mechanism to guide the
sensorimotor process is based on information gain, i.e., on selecting actions to minimize the
uncertainty regarding the current belief state of the environment. Furthermore the clustering




of sensorimotor features for the generation of hierarchical knowledge-base, which is utilized
by the inference process, will be covered as well. Active perception is closely related to
sensorimotor processing. Actions are selected and executed which are believed to maximize
information gain through sensory input. These principles can be applied to complex systems
like spacecrafts. Navigation approaches based on active perception can be used on transfer
orbits through the solar system but also for localization and mapping in the proximity of
small solar system bodies, e.g., asteroids.
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Zusammenfassung

Das menschliche Sehsystem diente als Inspiration fiir viele Ansétze des maschinellen Sehens.
Die Féhigkeit des menschlichen Sehsystems, Objekte in unbewegten und bewegten Bildern zu
erkennen, zu verfolgen und wiederzuerkennen, wird von Computersystemen bisher nicht er-
reicht. Die Mustererkennung ist eines der Hauptanwendungsgebiete des maschinellen Sehens.
Diese Arbeit beleuchtet drei verschiedene Perspektiven, wie biologisch inspirierte Musterer-
kennung realisiert werden kann.

Die erste ist eine direkte Ubertragung von Eigenschaften von Neuronen im priméren vi-
suellen Cortex (V1) auf Computermodelle. Um die Grundlage fiir Modelle zu schaffen, die
Reaktionen von V1-Neuronen vorhersagen, werden diese Eigenschaften und bekannten Effekte
kurz erlautert. Die einzelnen Komponenten, die zu einem Modell des menschlichen visuellen
Systems (HVS) beitragen, werden als nichstes dargestellt. Solche Modelle eignen sich fiir Mus-
tererkennung auf low-level Ebene, z.B. Gittermuster oder primitive Formen. Es wird gezeigt,
wie ein solches Modell die Wahrnehmung von Streifenfehlern und deren subjektive Bewertung
durch menschliche Beobachter vorhersagen kann. Die Anwendung fiir dieses Modell ist die
Bewertung von Offsetdruckmaschinen, die diese Klasse von Fehlern zwangsldufig mit einer
bestimmten Stérke erzeugen. Weiterhin soll gezeigt werden, wie eine Haufigkeitsverteilung,
Auto- und Kreuzkorrelationsfunktionen auf neurobiologisch plausible Weise berechnet wer-
den konnen, indem Gain Control Funktionen verwendet werden, welche Neurone im visuellen
System zugeschrieben werden.

Die zweite Perspektive wird durch neuronale Netze gegeben. Hierbei handelt es sich um
einen konnektionistischen Ansatz zur Realisierung von Computermodellen mit einfachen,
aber hochgradig verbundenen Einheiten. Neuronale Netze, inspiriert von der Struktur des
Gehirns, stellen eine sehr vereinfachte Sicht auf das Gehirn dar. Fiir die Mustererkennung
haben sie sich als dufserst leistungsfihig erwiesen, insbesondere in Form von neuronalen Net-
zen mit Faltung (CNN). Sie eignen sich fiir komplexe Erkennungsaufgaben, z.B. Objekt-,
Szenen- oder Aktivitdtserkennung. Die in dieser Arbeit behandelten Ansétze sind multimo-
dale CNNs fiir menschliche Aktivitdtenerkennung (HAR). Der Schwerpunkt liegt dabei auf
dem Vergleich von Fusionsstrategien, ndmlich der frithen und der spdten Fusion. Als Anwen-
dung wird das Modell zur menschlichen Aktivitdtenerkennung verwendet, um von Menschen
aufgenommene Daten automatisch zu annotieren. Es dient als Teil einer Pipeline, die darauf
abzielt, menschliches Wissen iiber Alltagstétigkeiten auf einen Roboter zu iibertragen.

Die dritte Perspektive wird durch die Verarbeitung von sensomotorischen Reprisentationen
abgedeckt. Diese sind Paare von sensorischen Informationen und motorischen Aktionen. Im
Bereich des Sehens sind sakkadische Augenbewegungen ein Beispiel fiir die sensomotorische
Verarbeitung, aber sie kann auf alle Modalitdten der menschlichen Sinneswahrnehmung ange-
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wendet werden. Die in dieser Arbeit behandelten Berechnungsmodelle werden auf die visuelle
Wahrnehmung, sowie Lokalisierung in einer rdumlichen Umgebung angewendet. Der Inferenz-
mechanismus zur Steuerung des sensomotorischen Prozesses basiert auf Informationsgewinn,
d.h. auf der Auswahl von Aktionen zur Minimierung der Unsicherheit beziiglich des aktuellen
Glaubenszustands der Umgebung. Weiterhin wird das Clustering von sensomotorischen Merk-
malen zur Generierung einer hierarchischen Wissensbasis, die vom Inferenzprozess genutzt
wird, behandelt. Die aktive Wahrnehmung ist eng mit der sensomotorischen Verarbeitung
verbunden. Es werden Aktionen ausgewéhlt und ausgefiihrt, von denen angenommen wird,
dass sie den hochsten Informationsgewinn durch sensorischen Input liefern. Diese Prinzipien
lassen sich auf komplexe Systeme wie Raumschiffe anwenden. Auf aktiver Wahrnehmung ba-
sierende Navigationsansitze konnen auf Transferorbits durch das Sonnensystem, aber auch
zur Lokalisierung und Kartierung in der Ndhe von Kleinkorpern, z.B. Asteroiden, eingesetzt
werden.
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CHAPTER 1

Introduction

Vision is the primary sense for humans which provides rich information about our environ-
ment. It enables us to perceive, navigate within and interact with it. A significant amount
of information can be obtained through the visual system alone, enabling us to carry out
most tasks solely with this information. While we move through our environment we can
spot obstacles, recognize objects of interest and perceive their location, if they are in motion
or not, and the direction and speed they are moving in, so that we can avoid or interact with
them.

Of course our other senses also contribute significantly in our daily life, providing compli-
mentary information to the visual input, e.g. a sound can shift the focus of our attention
or can make the task of recognizing an object easier. The interaction between all our senses
enables us to perceive our world to the fullest extent and ultimately survive in it for some
millions of years already.

This work covers computational models of the human visual system, both as a stand-alone
model and part of a multi-sensory system. Furthermore, the incorporation of high-level
cognitive principles through information theory is covered as well.

The human brain is a extraordinary complex organ which dedicates a large amount of its
volume to the processing of sensory information. The visual cortex located in the occipital
lobe at the back of your head is responsible for the processing the visual component. Its
first part, the primary visual cortex (V1), serves (among other functionalities) as a feature
extractor, recognizing primitive patterns like edges, corners or gratings (Oram and Perrett,
1994). Low level vision can be represented by V1 models, relating the strengths of response
with certain patterns. Questions whether a specific pattern might be visible to humans can
be answered with the help of such models.

Complex visual tasks like object or activity recognition require much more sophisticated
models. The classical approach from machine learning is to use hand-crafted features and
map them through learning algorithms to the solution. While these approaches dominated in
the past they have been surpasses by deep learning methods in the last decade (Krizhevsky,
Sutskever, and Hinton, 2012). In the image domain convolutional neural networks have
established themselves as the state-of-the-art approach to solve a large variety of problems.
They were successfully applied to other domains like audio (Chandrakala and Jayalakshmi,
2019), radar (Lang et al., 2020) or volumetric data (Qi et al., 2016) as well.

While computational models of the visual system and convolutional neural networks are
bottom-up approaches, perception can also be modeled by incorporating top-down approaches,




CHAPTER 1. INTRODUCTION

using higher level cognitive principles. Human perception of its environment is performed
through saccadic exploration, directing the fovea to locations of interest and forming a neural
image through repeated fixations. This behavior is an example of being guided by higher
level cognitive processes and can be modeled by information theoretic approaches.

1.1 Outline and Contribution

This cumulative dissertation consists of three major parts, all under the umbrella of bio-
inspired pattern recognition and its applications. Each part sheds a different light on the
question of how biological principles can be utilized in computer-science problems.

e Chapter 2 “Human Visual System Models” stays close to the biological foundations of
the human visual system (HVS) and the properties of neurons. We have developed a
model of the HVS according to the state-of-the-art visual models and have applied it
to detection and prediction of subjective assessment of streak distortions in printings
produced by offset printing machines. This is a direct application of a model to a prob-
lem which is of practical interest to the printing industry. The evaluation of a printing
machine among other tests involves a test for streak distortions. The automated testing
procedures currently in place show subpar results which might be improved with our
system. HVS models are commonly used to approximate the activity of the primary vi-
sual cortex (V1), usually focusing on foveal perception. Peripheral vision and models of
V2 have recently been investigated by exploiting statistical information about a scene.
In this chapter we also show how a simple ensemble of neurons with properties known
from neurobiology is able to estimate a frequency distribution and could bridge the gap
between statistical information used in models and a plausible neurological mechanism
to compute them.

e Chapter 3 “Activity Recognition with Convolutional Neural Networks” introduces neu-
ral networks and their most important features, where the focus is on activity recog-
nition using convolutional neural networks. The functioning of the brain itself is the
inspiration for neural networks with simple units of limited processing power being able
to solve complex problems in a collectivist approach by forming a large, highly con-
nected network. We have investigated the design of deep neural networks regarding the
optimal depth of a particular network architecture for skeleton-based activity recogni-
tion. Furthermore, we have implemented a multimodal convolutional neural network
for activity recognition which sheds light on the question which fusion strategy is the
best approach. Such a system can contribute to a pipeline which enables the transfer
of human activity data to robots.

e Chapter 4 “Sensorimotor Perception and Navigation” features our work on sensorimotor
visual perception and navigation which uses information theoretic approaches. These
approaches are inspired by the way saccadic eye-movement guided by high-level cogni-
tive processes, featuring a high-level view on visual pattern recognition. We summarize
our work on clustering of sensorimotor features (SMF) and its integration into an agent
system. This chapter concludes with the transfer of information theoretic and cognitive
approaches to autonomous navigation of a spacecraft.

Chapter 5 “Conclusion and Outlook” summarizes all contributions and gives an outlook on
future research opportunities. A list of publications by the author is given afterwards. The
accumulated publications can be found in the appendix.




CHAPTER 2

Human Visual System Models

Computational models of the human visual system (HVS) are close to the biological founda-
tion known from neurobiology. They generally aim at predicting the perception of patterns
as measured in psychophysical experiments from human subjects.

In this chapter the author summarizes the most important properties of the human visual
system (Section 2.1) which are reflected in the standard model of HVS (Section 2.2). We
used the HVS model for prediction of the perceived severity of streak distortions in printings
as summarized in Section 2.3. Section 2.4 covers the estimation of a frequency distribution
with a neural representation. The means to achieve this stem from the properties known
from V1 simple cells.

2.1 The Human Visual System

The retina forms the first layer of the visual system. It holds the photoreceptors, but also a
thin layer of neural cells which already process the signal from the receptors. These neural
cells in retina are the same cells as the brain making them a part of it. The fovea is the spot
on the retina with the highest visual acuity (Palmer, 1999, pp. 28-34). It has a diameter
of approx. 0.3 millimeters and covers approx. 1° of our visual field. In comparison to the
entire field of view of approx. 140° this is very narrow but still this spot is responsible for the
perception of all the details in our environment (Tschulakow et al., 2018).

In vision science the concept of the receptive field relates the area of the retina where
light stimuli have been detected to the corresponding neural responses (Hartline, 1938). This
general concept of describing a neuron has been extended to other sensory neurons as well
(Wandell, 1995, pp. 128-135).

The classical receptive field of a ganglion cell is described by a center-surround structure
where the center area and the area surrounding it are stimulated oppositely by light. Ganglion
cells can be divided into two classes according to this structure (Wandell, 1995, pp. 128-135):

e on-center, off-surround cell where the center area is excitatory and the surround in-
hibitory to the cell’s response,

e and off-center, on-surround which act the other way round.

This is achieved through lateral inhibition (Hartline, Wagner, and Ratliff, 1956) which influ-
ences the neighboring photoreceptor’s responses (Palmer, 1999, p. 147).
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The response of neurons in the visual pathway usually depends on contrast and not on
absolute light intensities. Luminance ranges across six orders of magnitude in our daily
life between evening and bright daylight, while the common neuron can encode only two to
three orders of magnitude making it difficult for biological systems to respond to absolute
intensities in such a huge range (Wandell, 1995, p. 117). In general contrast can be defined
as the ratio between the intensity change and the average intensity. The average intensity
can be calculated across an image or image patch or the area of the receptive field in the case
of a neuron (Wandell, 1995, pp. 146-148).

Neurons are typically responding differently depending on the spatial frequency of a pat-
tern. The contrast sensitivity function summarizes the response of a neuron at different
spatial frequencies and further provides information about the neuron’s receptive field. The
concept of contrast sensitivity is not only applied to ganglion cells, but to all neurons in
the visual pathway, primarily to those in the early areas where neurons respond to primitive
shapes, e.g., bars or edges. Depending on the size of a pattern on the retina, a neuron will
respond differently, making it a function of spatial frequency (Wandell, 1995, pp. 135-137).
Apart from individual neurons the overall visual function can be described by the contrast
sensitivity function (CSF) (Campbell and Robson, 1968). The CSF can be seen as an enve-
lope for a number of different contrast sensitivity functions of parallel channels in the visual
system (Robson, 1993).

The primary visual cortex, i.e., Visual Cortex 1 or short V1, receives the neural connections
from the retina through the lateral geniculate nucleus (LGN) (Palmer, 1999, pp. 148-151).
Hubel and Wiesel have received the Nobel Price for the measurement of receptive fields of
neurons in V1, categorized as simple and complex cells (Hubel and Wiesel, 1959; Hubel and
Wiesel, 1962; Hubel and Wiesel, 1968). These cells have an oriented receptive field, thus
responding better to patterns of a specific orientation. The patterns which simplex and
complex cells respond to can be described as bars and edges. The receptive fields are built
respectively from adjacent excitatory and inhibitory regions which are longer in one direction
than in the other, forming a main axis which defines their preferred orientation (Wandell,
1995, pp. 135-137).

Simple cells are usually selective to patterns with a specific phase (Palmer, 1999, pp. 151—
153). For instance, inverting the intensities but keeping the contrast will not trigger a response
from a simple cell. Complex cells on the other hand are generally invariant to the polarity
of a contrast. They show similar selectivity for orientation and contrast as simple cells, but
respond to a pattern and its inverted version equally strong as shown for contrast reversing
patterns (De Valois, Albrecht, and Thorell, 1982). Similarly a sinusoidal pattern drifting
over the receptive field of a simple cell will trigger a clear peak where the phase of the signal
matches the preferred selectivity with regard to polarity and orientation whereas a complex
cell will respond on a near constant level (De Valois, Albrecht, and Thorell, 1982).

Figure 2.1 shows the responses of neurons in area V1 as measured by Albrecht and Hamil-
ton, 1982b. The neural response curves show saturation based on the spatial frequency of
the pattern. This effect was explained by a mechanism called gain control where the pooled
signal for neighboring neurons suppresses the response of a neuron (DeAngelis et al., 1992;
Geisler and Albrecht, 1992; Heeger, 1992). A model for this relation is given in Heeger, 1992.

Masking describes the interaction of two or more patterns which are presented simultane-
ously (Wandell, 1995, pp. 219-221). One pattern serves as the test pattern for which the
detection threshold elevation is to be measured. This is the difference between the threshold
for the masking pattern alone versus the test and masking pattern together. Test pattern and
mask are added, and the resulting sum of the patterns’ signals is presented to the observer.
When test and mask cannot be discriminated from the mask alone even though the test
pattern alone is visible, then we can say that the mask is actually masking the test pattern.
But there can be also the case that the test + mask can be discriminated from the mask
alone while the test pattern alone is not visible. This case where the mask actually helps to
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Figure 2.1: Contrast response of a neuron in V1 (adapted from Albrecht and Hamilton, 1982b)

detect the test pattern is called facilitation (Wandell, 1995, pp. 219-221).

The effects seen in contrast normalization and masking generally led to the belief that
internal representation is organized in a multi-channel fashion (Ginsburg, 1986; Wiesel and
Hubel, 1963; Hubel and Wiesel, 1977).

2.2 Models of V1

A computational HVS model is generally designed in a way that the properties and effects
described above can be replicated. The scientific community has arrived at the stage where
a standard model can be formulated. It features

e a local contrast stage where absolute luminance values are abstracted from,

e a multi-channel decomposition into spatial frequency scales (fine to coarse images) and
over orientation channels,

e an application of a contrast sensitivity function, and

e a pooling stage accounting for masking and contrast normalization effects (Nadenau
et al., 2000).

2.2.1 Contrast Sensitivity

The contrast sensitivity function is a central element in a model of human vision. The CSF
can be measured for individual detection mechanisms in the visual system, but also globally
for the visual system, serving as an envelope for various CSFs (Robson, 1993). From this
view the contrast sensitivity can be applied in two ways. The first is to apply it globally and
the second way is to tune the individual filters to represent the CSF through the set of filters.

Global tuning is generally achieved with a filter function in the frequency domain (Daly,
1993; Watson and Solomon, 1997). The filter function is applied to frequency domain rep-
resentation of the input signal, adjusting the amplitudes of spatial frequencies. Since the
CSF is a function of spatial frequency and estimated from psychophysical experiments, the
design of the filter function must be based on certain assumptions about viewing distance
and size of the image in physical dimensions. If there is an experimental setup for the model
in development, it can usually provide these pieces of information (e.g., size of the display,
viewing distance of the observer).
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Tuning of individual filters can be approached in a similar way by taking the values of the
CSF function in the points corresponding to the center frequencies of the individual filters.
If there is data available from psychophysical experiments, the individual filter channel can
be tuned by fitting the filter parameters to the experimental data.

2.2.2 Contrast Computation

Often the contrast is known beforehand, especially if it is a parameter in an experimental
setup as is the case in psycho-physical vision experiments. Here the target luminance is
calculated from the target contrast and can be reversed for processing of images resulting
from this procedure. An example can be found in Watson and Ahumada Jr., 2005 who
computed the display luminance according to

c
L() = Lo [1 + 57 (1~ 128) (2.1)
with L being the display luminance, Ly the mean luminance, [ the gray-level of the pixel and
¢ the contrast. In such a case the contrast can be computed by rearranging Equation 2.1.

To compute the contrast from an arbitrary image’s luminance function, there are several
ways depending on whether global or local contrasts are required. If contrast is to be com-
puted on a global level, Weber contrast (Wandell, 1995, pp. 147-148), Michelson contrast
(Michelson, 1927) or King-Smith & Kulikowski contrast (King-Smith and Kulikowski, 1975)
can be computed directly.

For local contrast it becomes more difficult since the contrast has to account for the local
image information which can be complex in natural images (Peli, 1997). The “Difference of
Gaussians” (DOG) is the classical function for the description of the sensitivity of retinal gan-
glion cells (Enroth-Cugell and Robson, 1966; Enroth-Cugell, Robson, et al., 1983; Rodieck,
1965). It uses two Gaussian functions with different cut-off frequencies, so that the lower
frequency filter is subtracted from the higher one, resulting in a linear band-pass output
(Eq. 2.2). The 2-dimensional function is defined as

1 .’L'2 +y2 1 ZL'Q +y2
DoG _
i1 (@) = Uz, y) * <27m'i2 eXPp < 202 B a27TUZ-2+1 P 207, ’ 22)

with /(z,y) denoting the luminance function at a position in the image, * being a convolution,
«a a gain factor, and o; and 0,41 the variances of the Gaussian windows (Gadzicki and
Zetzsche, 2013). This notation stems from the pyramid representation where i + 1 denotes
the lower frequency channel.

Another operator for calculation of contrast is the “Ration of Gaussian” (RoG) operator
(Zetzsche and Hauske, 1989a). It is a divisive operation of two low-pass inputs with different
cut-off frequencies resulting in a non-linear band-pass output (Eq. 2.3).

2 2
Uz, y) * —27302 exp ( - (T;;é” ) >
RoG K ‘

9i+1 (xvy) =
(l(m,y) * r;z exp (— (fg:rzyz) )) + 7
i1 i1

with the same notation as in 2.2 and 7 as a constant for avoiding division by zero.

Figure 2.2 illustrates the response of the operators. The RoG operator has the advantage
to transform the relative increase in luminance directly (first and second edge in Figure 2.2a)
and transform it into contrast of equal levels (Figure 2.2b). The DoG operator is linear and
outputs different contrast at these positions (Figure 2.2c), requiring the luminance signal to
be represented on a logarithmic scale.
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Figure 2.2: Response of a Ratio of Gaussian (RoG) operator to luminance step edges. (a) In-
put. (b) The RoG output represents luminance contrast. (c¢) Linear Difference of
Gaussians (DoG) response shown for comparison (Source: Zetzsche and Hauske,
1989a).

The RoG is similar to the local band-limited contrast as suggested by Peli, 1990. It is
defined as

gPELI(:C’ ) _ a(x,y) (24)

()

with a(z,y) being a band-limited filter (a radically symmetric band-pass filter) output of the
image and b(z,y) a low-pass filter output.

2.2.3 Multi-Channel Decomposition

The multi-channel decomposition involves a scale-space representation where features are
extracted from high and low spatial frequencies separately.

2.2.3.1 Pyramid Representation

The image pyramid is a memory efficient way to represent multi-resolution images and is
commonly used in computer vision. In this scheme an image is filtered with an appropri-
ate low-pass and sub-sampled usually by a factor of 2 in every direction (Wandell, 1995,
pp. 262-267). The resulting image has i size of the original image, but still contains all the
necessary information with regard to % Nyquist frequency! of the original image. Any filters
which operate within this limit can be applied to the low-passed filtered sub-sampled channel
without any loss of information. This procedure of low-pass filtering and sub-sampling can
be repeated multiple times, resulting in a pyramid-like representation. The low-pass filter
is usually a Gaussian low-pass, hence titled Gaussian pyramid. Burt and Adelson, 1983 in-
troduced this scheme, but actually aimed to create a difference image for every scale. The
low-pass filtered image was subtracted from the original image for every scale, resulting in a
high-pass filtered image. This version of the pyramid scheme is known as Laplacian pyramid.

2.2.3.2 Scale and Orientation Selective Filters

The image pyramid provides the base frame for the application of spatial-frequency and
orientation selective filters. The Gabor function (Gabor, 1946) is generally considered as a
good fit to the selectivity of simple cells (Marcelja, 1980; Kulikowski, Marcelja, and Bishop,
1982; Daugman, 1984). Hawken and Parker, 1987 suggested that the DoG-S function (the
Gaussian for the surround is split into two Gaussians separated spatially by +S and —S

IThe Nyquist frequency is the highest alias-free frequency resulting from a discrete sampling process of a
(continuous) signal. It is % of the sampling rate.
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(a) (b)

Figure 2.3: Gabor filter outputs for an orientation of 0°: (a) even and (b) odd symmetric
parts.

from the center Gaussian) is a better fit, but the differences are marginal. The 2-dimensional
Gabor function (Eq. 2.5) in the spatial domain consists of a complex sinusoidal function
(Eq. 2.6) weighted by a Gaussian function (Eq. 2.7)

h(z,y) = g(z,y)s(z,y) (2.5)

where
s(x,y) = exp(—j2nuox) (2.6)
glz,y) = 27mlm0y exp (—71' (;T% + %)) , (2.7)

with 04,0, being the variances of the 2D Gaussian function and ug the wavelength of the
complex sinusoidal function. The orientation can be modeled by a rotation of the coordinate
system, thus rotating the desired orientation onto the x-axis as the function itself has an
orientation of 0° (Gadzicki and Zetzsche, 2013). The outputs of a Gabor filter are shown
in Figure 2.3. The complex sinusoidal function contains two symmetries, the cosine, even
symmetric part (Figure 2.3b) and the sine, odd symmetric part (Figure 2.3a)

The Gabor function provides a kernel for both, even and odd parts, which can be convolved
with an image. Rather than operating in the spatial domain, often a filter approach in the
frequency domain is taken. Here the Gabor filter function can be modeled directly by shifting
the Gaussian function to the location w,v which represent the center frequency resulting in
the filter function (Eq. 2.8)

(u —ug)* v? ) (2.8)

H(u,v) = exp <—7r 2on)? + W(ZUU)Q

with ug being the center frequency and o, 0, defining the bandwidths of the filter. The
orientation is again modeled by a rotation of the coordinate system (Gadzicki and Zetzsche,
2013). The parameters are given in polar notation by a center frequency and an orientation
angle.

Field, 1987 argues that the Gabor function is only optimal in terms of the spread of
uncertainty in space and spatial frequency in the Cartesian coordinate system. He suggests
a Log-Gabor function (Eq. 2.9) which is proposed to be better suited for a representation in
polar notation, minimizing the spread and overlap between individual filters. It is given by

1 P2 _ 2 — - T 2
Hlog(/% ¢) _ ]k exp <_%> [— exp <(¢ 20—?:0) ) - (_1k) exp <%>‘|
(2.9)
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with p being the radial frequency, ¢ the angle, py the center frequency and ¢, the orientation
angle. o, and oy define the frequency and orientation bandwidth of the filter.

Another popular decomposition is the steerable pyramid (Simoncelli, W. T. Freeman, et
al., 1992; Simoncelli and W. T. Freeman, 1995). This transformation is a multi-scale, multi-
orientation image decomposition which is translation-invariant and rotation-invariant, ad-
dressing a drawback of orthogonal wavelet transforms which are not translation-invariant. It
has been used in a number of HVS models (Teo and Heeger, 1994; Heeger and Teo, 1995).

Earlier models also used polar separable filters, e.g. the fan filter (Daly, 1993). It consists
of a radial and an orientation component, using the cosine function in polar notation.

2.2.4 Normalization and Masking Effects
2.2.4.1 Gain Control

The inhibition from neighboring units can be modeled by pooling over scales, orientations
and space, and using the pooled response as a divisive term in the Naka-Rushton function
(Albrecht and Hamilton, 1982a) (Eq. 2.10). Pooling over space is performed with a low-pass
filter, e.g., a Gaussian filter, given as

_ 7“5,0(.1', y)p
7"5)0<-’I;, y) = s+1 6 ° (210)

el + LZ . ;1(7'5,6 * kso)(w,y)

The response r of a filter at scale s and orientation o is normalized by the responses the
neighboring scales § and all orientation 6. k is the low-pass kernel used for spatial pooling
within a channel. In addition, ¢ is the point where saturation sets in and ¢ is the exponent.

Such a divisive contrast gain control is a common feature of visual models (Watson and
Solomon, 1997; Teo and Heeger, 1994; J. M. Foley, 1994; Heeger, 1992; Legge and J. Foley,
1980).

2.2.4.2 Masking

Masking effects are modeled by adding a second pathway to the model, so that mask and
mask+signal are processed separately and compared to each other (Daly, 1993; Watson
and Solomon, 1997). For the comparison of these two pathways a norm like the Minkowski
distance (Eq. 2.11) has been used in a variety of models (Quick, 1974; Graham, 1977; Graham
and Robson, 1987; Watson, 1979), but this is more because of practical reasons than biological
insights. The Minkowski distance is given as

1/p
d= ( § |Tsignal+background - rbackground‘p) (211)

Here p is an exponent which is set to 2 in many models, turning it into the Euclidean norm
as in our model. In our model the norm was applied per pixel, but in other settings, e.g.,
prediction of detection thresholds, it is applied globally and summed over space (Watson and
Ahumada Jr., 2005).

2.2.5 Model Overview

The overview of our model, used in Gadzicki, 2009; Gadzicki and Zetzsche, 2013, is shown in
Figure 2.4 and 2.5.

On the top level the model consists of two pathways accounting for masking effects by
processing the background and signal-+background separately and computing the difference
in the final stage (Figure 2.4). Each pathway consists of a HVS model shown in Figure 2.5.
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Figure 2.4: Model overview. The system (shown in detail in Figure 2.5) generates a multi-

channel representation of both signal and signal+background. The distance be-
tween the two representations is assumed to be the perceived strength of the
signal, and is computed by the difference norm shown at the right (Adapted from
Gadzicki and Zetzsche, 2013).

1 2 3 4 Gain Control

Figure 2.5: Overview over the system (as used for both pathways in Figure 2.4). From the

input (1), the contrast is computed by non-linear ROG filters (2) and passed to a
set of frequency- and orientation-selective linear filters (3). The outputs are then
passed through gain control mechanisms (4). One of these is shown in detail on
the right-hand side. Hence each channel is normalized by spatial pooling over the
other channels (Adapted from Gadzicki and Zetzsche, 2013).
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2.3. APPLICATION OF A V1 MODEL TO VISUAL ASSESSMENT

We use a Gaussian pyramid for decomposition into spatial frequency scales and apply the
RoG operator for contrast computation. The scales are further decomposed into orientation
channels by Log-Gabor filters (Field, 1987) which are tuned to represent the contrast sensi-
tivity function with the set of filters. The gain control stage pools neighboring responses for
normalization.

2.3 Application of a V1 Model to Visual Assessment

2.3.1 Visual Quality Assessment

For technical applications like the transmission of images or video, the relation of image
quality and compression level is of major interest. It covers the transmission and display in
television, digital media, but also in traditional media like printing. The subjective assessment
methods described in 2.3.1.1 deliver the most accurate ratings, but these methods require a
lot of time and resources, and might not be feasible for every minor change in a compression
algorithm.

Objective methods use an algorithm to determine the image quality. This allows for an
automated evaluation, greatly reducing the resources required. Such methods should ideally
have a high correlation with the subjective assessments by human subjects.

2.3.1.1 Testing of Subjective Perception

In psychophysical experiments the subjective performance can be generally tested by adjust-
ment or judgment tasks. Subjects in adjustment tasks are given control over the stimulus and
are asked to satisfy a given criterion, e.g., adjust the contrast of a pattern to be “just barely
detectable”, cancel a distortion or match two stimuli. In judgment tasks the subjects are
asked to classify a stimulus according to a given criterion, e.g., rate the stimulus on a scale,
answer whether a stimulus was present in two-alternative forced-choice or yes-no settings
(Pelli and Farell, 1995).

The experiments performed are often aimed at determining a threshold of perception,
motivated by the desire to investigate low-level vision, minimizing the effects of cognition.
They can be evaluated statistically with the threshold being defined at arbitrary levels of
performance. These kind of experiments are well-suited to investigate the perception of
simple patterns like bars or sinusoidal gratings (Pelli and Farell, 1995).

For complex patterns as in natural images the threshold approach has limitations. It can
still be useful to determine whether any distortion can be perceived at all, but experimenters
would to like to judge the effects over a wider range (Nadenau et al., 2000). For compression
tasks the association of rate and distortion is crucial for the evaluation of a coding scheme.
Here the judgment of overall visual quality is more important.

Standard procedures are for the assessment of visual quality through subjective methods
described in ITU-R BT.500-11 2002. Even though the International Telecommunication
Union (ITU) has developed the methods for television they can be applied to still images as
well (Nadenau et al., 2000). Two commonly used methods are Double Stimulus Continuous
Quality Scale (DSCQS) and the Double Stimulus Impairment Scale (DSIS) (ITU-R BT.500-
11 2002).

2.3.1.2 Methods for Measurement of Visual Distortions

The simplest way to assess the distortions introduced with regard to a reference image is to
use pixel-based metrics. The metrics are calculated between two images with luminance Iy
and I at positions z,y. Widely used measures are mean squared error (MSE) (Eq. 2.12) or
peak signal-to-noise ratio (PSNR) (Eq. 2.13):

11
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1 n m
dysg = o Z (ll(may) - lz(mvy))Q (2-12)
z=1y=1
MAX?
dpsyr = 101log d L. (2.13)
MSE

MAX is the maximum value of [, e.g., 255 for a 8-bit integer or 1.0 for a float when representing
gray-scale or color channel values (Nadenau et al., 2000). Such pixel-based metrics are easy
to compute and fast to apply. Unfortunately they have little in common with subjective
assessments (Marmolin, 1986; Girod, 1993; Mannos and Sakrison, 1974; Teo and Heeger,
1994; Zhou Wang and Bovik, 2002).

The inadequacy of pixel-based metrics has been realized early and led to the development
of more sophisticated methods (Mannos and Sakrison, 1974). There are many approaches
which are not based on the human visual system. Feature based scales, e.g., (Miyahara, 1988;
Miyahara, Kotani, and Algazi, 1998), apply a simple CSF approximation, weighting errors
according to spatial frequencies, and consider particular structural errors. The correlation
between these individual features is performed with a principal component analysis (PCA)
with the quality metric being a linear combination of principal components.

Methods based on the structural similarity index (SSMI)? (Z. Wang, Simoncelli, and Bovik,
2003; Z. Wang, Bovik, Sheikh, et al., 2004; Z. Wang, Bovik, and Simoncelli, 2005) apply a
CSF filtering, multi-channel decomposition and error normalization. The SSMI takes local lu-
minance, contrast, and structural composition into account as separate measures, combining
them according to their relative importance.

Multi-dimensional impairment scales approaches (Kayargadde and Martens, 1996) analyze
the image along multi-dimensional perception axes defined by distortions introduced from
blur and noise. The impairment vector spans a space which can be used to assess the quality
scale.

X. Zhang and Wandell, 1997 proposed a spatial extension to CIELAB, a uniform color
space (CIE 1976 1976), which adds filtering of spatial frequencies to CIELABs color separated
channels, measuring the quality as the distance AE between two images.

The image information fidelity approach (Sheikh and Bovik, 2006) takes inspiration from
natural image statistics, and proposes that for the class of natural images the mutual infor-
mation between two images can be used as a measure of perceptual fidelity. The comparison
is calculated over subbands extracted with a wavelet decomposition.

Approaches based on convolutional neural networks have been proposed recently (J. Kim,
Nguyen, and Lee, 2019; W. Hou et al., 2015; Y. Li et al., 2015).

2.3.1.3 Image Quality Approaches Based on Human Visual System

Starting with Mannos and Sakrison, 1974 the HVS models for assessment of visual quality
have become the norm when performance was considered more important than computational
time.

There is a number of image quality models based on the HVS (Zetzsche and Hauske,
1989a; Zetzsche and Hauske, 1989b; Daly, 1993; Lubin, 1993; Lubin, 1995; Teo and Heeger,
1994; Heeger and Teo, 1995; Westen, Lagendijk, and Biemond, 1995; C. C. Taylor et al.,
1997) which generally incorporate the most important properties, accounting for luminance
invariance, sensitivity to frequencies and orientations, and masking effects (Gadzicki and
Zetzsche, 2013). Masking effects have been modeled with a point-wise nonlinearity in earlier
models (Daly, 1993; Westen, Lagendijk, and Biemond, 1995) while newer models used divisive
inhibition with pooling over channels and spatial positions (Teo and Heeger, 1994; Heeger

2The SSMI model has gained wide popularity. Its developers received an Emmy Award in 2015.
https://www.emmys.com/news/press-releases /honorees-announced-67th-engineering-emmy-awards
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and Teo, 1995). Daly, 1993’s Visible Differences Predictor (VDP) has been extended to high
dynamic range images (Mantiuk, Myszkowski, and Seidel, 2004).

Larson and Chandler, 2010 argue that the usage of a single strategy for determining the
image quality with a HVS is not sufficient. Instead, different strategies for comparing high-
quality and low-quality images are suggested.

2.3.2 Technical Applications

HVS models have been used to evaluate the observer’s performance depending on the display
type (Krupinski et al., 2004). For medical diagnosis, e.g., viewing of mammographic images,
it is crucial that the display enables the observer to perform the identification and/or classi-
fication task as good as possible. Observer’s performance on LCD displays was reported to
be superior to CRT displays, and the HVS model was able to predict the performance with
high correlation.

2.3.2.1 Prediction of Perceived Distortion of Streak Patterns

This section summarizes our work published in “Prediction of the Perceived
Quality of Streak Distortions in Offset-Printing with a Psychophysically
Motiwated Multi-channel Model” and “Prediction of the perceived quality
of streak distortions in offset-printing with a psychophysically motivated
multi-channel model”.

The application in our papers (Gadzicki and Zetzsche, 2012; Gadzicki and Zetzsche, 2013)
is the prediction of subjective assessments of streak distortions produced by modern offset
printing machines. Visual quality assessment approaches usually rate the entire image, but
in our work, we are interested in rating every pixel position.

The goal is to evaluate the printing machine itself according to the distortions it produces.
Streak distortions are a typical kind of these distortions, running horizontally across a print,
orthogonal to the printing direction. They stem from the printing process due to vibrations of
the machine operating at high speeds. These distortions are basically slight shifts of the ink
and cannot be avoided entirely, making is necessary to evaluate printing machine regarding
how strongly they produce these distortions.

The printing machines are highly sophisticated and expansive, being priced at several mil-
lions Euros. Since a faulty or misconfigured machine leads to a significant discount on the
price, an evaluation can result in disagreeing options from manufacturer’s and customer’s side
and ultimately in lawsuits. The evaluation task in subjective manner is resource-intensive,
being usually carried out by a human expert, motivating the development of automated pro-
cedures. The method in practice used the AFE difference in CIELAB color space measured
every 2.5mm in order to determine the distortion strength and classify it according to a
threshold (Handbuch zur technischen Abnahme von Bogenoffset-Rollenoffsetmaschinen 1996;
Technische Richtlinien Abnahme von Bogenoffsetdruckmaschinen 2005). The performance
of this procedure is rather poor, which prompted the development of our system. The “Ar-
beitskreis Streifenmessung” consisting of representatives from the major printing machine
manufacturers, mechanical and plant engineering association (VDMA), federal and state
printing associations and printing-related research institutes accompanied the development.

The model follows the standard multi-channel model as described in 2.2. The parameters
of the model have been fit according to assessments collected from human subjects. One
group of naive subjects conducted the assessments with streak distortions displayed on-screen,
establishing a baseline for the model. Another group of experts conducted assessments on
actual printings which were scanned for processing by our model.

In our experiments the subjects performed a judgment task were asked to mark the position
of a streak distortion and rate the impairment of the distortion on a scale similar to the
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Figure 2.6: Correlation between model predictions and inter-individually averaged assess-
ments for (a) naive observers and (b) experts. The red circles indicate assess-
ments of signals at the threshold of perception, containing at least one minimum
grade response (Source: Gadzicki and Zetzsche, 2013).

one defined by ITU. The performance of the subjects has been evaluated by the standard
deviations of their responses. Both naive and expert observers were stable in their own
assessments and able to reproduce their own responses reliably. As a group the experts were
more consistent in their responses.

Correlation Between Model and Assessments We have evaluated the performance of our
model by measuring the correlation of the model’s predictions with the inter-individually
averaged assessments of the observers. Figure 2.6a shows the results for naive observers and
Figure 2.6b for the expert observers. The naive observers show a better correlation to the
model than the experts even though their deviations of assessments as a group were worse
than for the expert observers. This can be explained by the presentation medium as well as
by the type of streak distortions presented. The printings had to be scanned, introducing
additional noise and contained a significant number of distortions at the threshold of visibility.
Such patterns pose a problem to the model, since even though the model could (and actually
does) output predictions below the threshold of detection, the assessments given by the
observers do not contain information about sub-threshold distortions. We investigated the
model behavior at the near-threshold pattern by omitting streaks which received a certain
percentage of minimum grades (1, barely visible). The correlation of the model for subsets
without such pattern is shown in Figure 2.7. One can see that the distortions at threshold have
a high variance with different levels mapped to the minimum grade (Figure 2.7a). Without
this subset of distortions, the model’s correlation increases from 0.81 to 0.88, meaning that
the model is capable of capturing the entire scale of assessments.

2.4 Statistical Operations in Computer Vision

The HVS model described so far are basically models of foveal vision. For peripheral vision
recent approaches featuring statistical summary have been proposed (Balas, Nakano, and
Rosenholtz, 2009; Rosenholtz, J. Huang, and Ehinger, 2012; Rosenholtz, J. Huang, Raj,
et al., 2012; J. Freeman and Simoncelli, 2011), relying on the usage of the auto- and cross-
correlation functions. For V2 work on selectivity for visual texture suggests that statistical
information plays a key role (Ziemba et al., 2016; Oleskiw and Simoncelli, 2018). Recently
models of V2 were proposed which rely on statistical representations (Oleskiw and Simoncelli,
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Figure 2.7: Correlation between model and inter-individually averaged expert’s assessments
(a) for ratings containing at least one minimum grade response and (b) for ratings
not containing the minimum grade. The red circles indicate assessments of signals
at the threshold of perception, containing at least one minimum grade response
(Source: Gadzicki and Zetzsche, 2013).

2019; Parthasarathy and Simoncelli, 2020; Oleskiw, Lieber, et al., 2020). The relevance of
auto- and cross-correlation functions for the perception of patterns has been investigated
for some time (Julesz, 1962; Uttal, 1975; Gliinder, 1986; Barlow and Berry, 2011). These

functions are defined as
N/2

hi)=— > e(k)og(i+k), (2.14)

k=—N/2+1

where auto-correlation results if e(k) = g(k) and where o indicates multiplication.

Representing probability distributions with neurons has been proposed based on population
coding (see Pouget, Dayan, and Zemel, 2003 for a review). This is an implicit representation of
a distribution where the activation patterns of a set of neurons are interpreted as representing
uncertainty. Furthermore the estimation of a probability density with neural networks has
been proposed (Reyneri, Colla, and Vannucci, 2011).

2.4.1 Neural Computation of a Probability Distribution

This section summarizes our publications “Statistical Invariants of Spatial
Form: From Local AND to Numerosity” and “Neural Computation of Sta-
tistical Image Properties in Peripheral Vision”.

Our papers (Zetzsche, Gadzicki, and Kluth, 2013; Zetzsche, Rosenholtz, et al., 2017) pro-
pose describe the realization of statistical summary operators with neurons. This is of partic-
ular interest for neurobiologically plausible models featuring statistical information since they
must rely on functionality attributed to neurons. The auto- and cross-correlation functions
are of special interest since they involve multiplication which cannot be realized easily.

The idea behind our work is that a frequency distribution can be represented by the his-
togram computed by indicator functions assigning values to particular bins. Specific indicator
functions can be used to compute reverse cumulative histograms containing the same infor-
mation as “normal” cumulative histograms (Figure 2.8a). These indicator functions resemble
responses of neurons in the visual cortex (Figure 2.8b). Indicator functions have a specific
sensitivity and are independent of the input once the threshold has been reached. These
properties can also be attributed to neurons in the visual cortex which show a sensitivity to
contrast, but can become saturated and lose their sensitivity to contrast. This is achieved
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by cortical gain control (contrast normalization) as initially described for cells in the vi-
sual cortex (Albrecht and Hamilton, 1982a), but now believed to exist throughout the brain
(Carandini and Heeger, 2012).

Measurements Indicator Functions Summation Histogram
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Figure 2.8: Computation of the reverse cumulative histogram. (a) shows the set of input

variables e to e, being passed as input to indicator functions. The output of
each indicator function is summed in a specific bin of the histogram.
(b) The response functions of three neurons in the visual cortex (Albrecht and
Hamilton, 1982a) show similarity with the indicator functions. They have dif-
ferent sensitivities and saturate into a constant output after the transition range
(Source: Zetzsche, Gadzicki, and Kluth, 2013).

An approximation of the reverse cumulative histogram can be achieved by replacing the
binary indicator functions with the smooth gain control functions. The information about
a probability distribution available to the visual cortex is illustrated in Fig. 2.9. The recon-
structed histogram (last row in Figure 2.9) can be viewed as low-pass filtered version of the
distribution.

The computation of auto- and cross-correlation functions requires multiplication, which can
be modeled using neurons (Resnikoff and Wells, 1984; Adelson and Bergen, 1985; Zetzsche
and Barth, 1990), but there is no evidence for such structures. However, the multiplication
itself is not crucial as the function only needs to output a high value if two features are
similar and a low value if they are not. This can be achieved by AND-like neural operations
(Zetzsche and Barth, 1990; Zetzsche and Nuding, 2005) via cortical gain control (Albrecht
and Hamilton, 1982a; Heeger, 1992) as shown by Zetzsche and Nuding, 2005. Cortical gain
control for two different features s;(x,y) and s;(z,y) can be written as

Si + 55
(\/s2+s2+€e)v2

where k = k(i,7), € is a constant which controls the steepness of the response and O is a
threshold. The resulting auto-correlation functions is an approximation, but the essential
features are captured (see Figure 2.10).

ge(2,y) = 9(si(z,y),s;(z,y)) :==max | 0, -0 (2.15)
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Figure 2.9: Neurobiological computation of a reverse cumulative histogram with the input
distribution in the upper row, the corresponding reverse histograms in the mid-
dle row and the estimated probability distribution derived from the cumulative
distribution in the lower row (Source: Zetzsche, Gadzicki, and Kluth, 2013).
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Figure 2.10: (a) shows an input and (b) the corresponding mathematical (red dotted) and
neurobiological (blue) auto-correlation function (Source: Zetzsche, Gadzicki, and
Kluth, 2013).

2.5 Contribution

In Gadzicki, 2009; Gadzicki and Zetzsche, 2013 we have described the application of a HVS
model for the prediction of streak distortions in printings, which, to the best of our knowledge,
is new to this domain. We proposed a solution for objective assessment of an important class
of distortions since those of the streak type inevitably occur in offset printing machines. Since
the measurement procedure in use produces unsatisfactory results, there is a high interest in
an objective method which provides better correlation with subjective assessments of expert
observers. Our model shows a particularly good correlation to the subjective assessments of
both, naive and expert ones over the range of the impairment scale. It performed not as well
for the assessments at the threshold of perception levels. As an outlook the model could be
modified slightly to predict threshold detection, but the tuning of a modified model would
require training data collected from observers for this task.

In Zetzsche, Gadzicki, and Kluth, 2013; Zetzsche, Rosenholtz, et al., 2017 we proposed
a neurobiologically plausible computation of a frequency distribution and auto- and cross-
correlation functions. We utilized the Naka-Rushton function, which is an established method
in vision science to model the gain control of a neuron’s response. While statistical operators
are commonplace in computer vision, neurobiologically plausible models of human vision must
rely on functions that are believed to be computable by neurons or used to model neuron’s
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responses. Neurobiologically plausible statistical operators are thus of high importance.

18



CHAPTER 3

Activity Recognition with Convolutional Neural Networks

In this chapter the author covers the connection between the visual system and neural net-
works in Section 3.1 and the basics of neural networks in Section 3.2. Human activity
recognition (HAR) (Section 3.3) sets the context for our contributions on unimodal HAR in
Section 3.4 and multimodal HAR with CNNs in Section 3.5. It concludes in Section 3.6 with
our contribution which aims at transferring human activity data to a robotic system.

3.1 Feature Invariant Networks

The computational model of HVS described in the previous chapter aims at modeling low-
level vision, basically V1. This model allows the general recognition of primitive features,
the response to contrast, and interaction between primitive patterns. Moving to recognition
of complex patterns requires models that include higher cortical areas.

There are at least two known pathways into which the visual system can be divided,
the ventral (form or “what”) and the dorsal (motion or “where”) (Mishkin, Ungerleider, and
Macko, 1983). Even though this separation should not be seen as too strict (Merigan and
Maunsell, 1993), it is generally accepted (Wiskott, 2009). The ventral pathway reaches from
the retina over the lateral geniculate nucleus (LGN), the visual areas 1 to 4 (V1-4), posterior
inferotemporal area (PIT), central inferotemporal area (CIT), anterior inferotemporal area
(AIT) to anterior superior temporal polysensory area (STPa) (Wiskott, 2009). The feature
selectivity become more and more complex with each area (Figure 3.1) and shift and size
invariance increases for the higher areas (Oram and Perrett, 1994).

The neurobiological constrains to computational models for invariant recognition are given
by Wiskott, 2009 and include among others a layered structure reflecting the layers of the ven-
tral pathway, a feature hierarchy with increasing feature complexity, an invariance hierarchy
regarding shift and learning. Invariant feature networks account for these requirements.

The HMAX model (Serre, Wolf, and Poggio, 2005) is a feature invariant network which
stays close to the biological example. It consists of a layer (S1) of Gabor filters which act as
simple cells and are organized in orientation and scales. It is followed by a max pooling layer
(C1) acting as complex cells, pooling over neighboring scales. The connections of these layers
are hard-wired and are interpreted as V1. Training occurs in the following layer (S2) where
random patches of various sizes are extracted from layer C1. These are used as prototype
vectors for radial basis functions, computing a distance to image patches presented to the
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Figure 3.1: Summary of neural responses in the ventral pathway (adapted from Oram and
Perrett, 1994.)

model. This layer can be interpreted as V4 or PIT. The final layer (C2) again performs a
max pooling over feature maps from S2 over scales and orientations and can be interpreted as
inferotemporal cortex (PIT, CIT, or AIT). The resulting feature map from C2 is passed to a
Support-Vector Machine (SVM, Cortes and Vapnik, 1995) as a final stage. The HMAX model
as described so far is an object classifier, but it was also extended to an action recognition
model (Jhuang et al., 2007) by adding a temporal prototype matching stage S3 and a temporal
pooling stage C3 on top of layer C2. The features from the last layer were again passed to a
SVM.

The HMAX model covers most of Wiskott, 2009’s constrains given above. The learning
requirement is covered in a rather crude fashion by random sampling and the overall depth of
the network is shallow with its four layers. Neural networks account for all these constraints,
including training.

3.2 Artificial Neural Networks

Artificial Neural Networks (ANN) are inspired by the human brain and the way neurons
interact but they were never meant to serve as realistic models. Instead, they try to imitate
some of its behavior in a very basic fashion. Neurons have limited processing power on their
own, but are highly connected to other neurons, enabling the entire set of neurons to solve
complex tasks. This is the central idea of connectionism or parallel distributed computing
(Rumelhart, McClelland, and PDP Research Group, 1986; McClelland, McNaughton, and
O’Reilly, 1995) which rose in the context of cognitive science in an attempt to ground the
symbolic systems in neural implementation (Goodfellow, Bengio, and Courville, 2016, p. 17).

While artificial neural networks are inspired by the organization of the brain in general,
convolutional neural networks (CNN) are more strictly connected to the visual cortex (Laskar,
Giraldo, and O. Schwartz, 2018; Grill-Spector et al., 2018). V1 is organized as a spatial map,
closely connected to the image structure in the retina (Schiessl and McLoughlin, 2003), which
is also the structure of features in CNNs. The simple cells in V1 are described by a convolution
(e.g. Gabor filter function (Gabor, 1946; Marcelja, 1980)) with a nonlinear function added
which is the design principle of a CNN. The features from the first layer of a CNN are Gabor-
like and can be replaced by a Gabor filter bank (Calderon, Roa, and Victorino, 2003; Luan
et al., 2018). Complex cells receive their inputs from multiple simple cells, resulting in an
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invariance to phase shifts of patterns and small spatial shifts. The pooling operation in CNNs
within and over channels attempt to emulate this behavior (Riesenhuber and Poggio, 1999).

3.2.1 Historical Development

This is a brief summary of the historical development (see Goodfellow, Bengio, and Courville,
2016 for a more detailed history).

In the 1950s the Perceptron model was introduced by Rosenblatt, 1958; Rosenblatt, 1962
which serves as the foundation of ANNs up to now. The single-layer Perceptron model was a
binary classifier which introduced a weighted sum of its inputs to determine activation and a
bias which is a constant input added to the cell. Widrow and Hoff, 1960 suggested a model
called ADALINE which features a Least Mean Squares (LMS) algorithm for adjusting the
weights. It is a special case of stochastic gradient decent used until now though with slight
modifications (Goodfellow, Bengio, and Courville, 2016, p. 15).

The Cognitron (Fukushima, 1975) and Neocognitron (Fukushima, 1980) introduced recti-
fied linear units which add a slight nonlinearity at the output of a neuron’s model. The back-
propagation algorithm (Rumelhart, Hinton, and Williams, 1986b) and parallel distributed
computing (Rumelhart, Hinton, and Williams, 1986a) enabled the design and training of
multi-layer networks with hidden units (Goodfellow, Bengio, and Courville, 2016, p. 15).
These models turned out to solve nonlinear problems like the XOR problem and later were
shown to be universal approximators (Cybenko, 1989; Hornik, 1991).

Convolutional Neural Networks were introduced by Denker et al., 1989 with hand-crafted
convolutional kernels and by LeCun, Boser, et al., 1989 with trained weights. The convolution
operation enables neural networks to process image data efficiently. The first networks had
a relatively shallow structure with only three hidden layers (LeCun, Boser, et al., 1989) or
five layers in LeNet5 (LeCun, Haffner, et al., 1999), but outperformed classical approaches
at tasks like hand-written digit recognition.

Deep neural networks gained their breakthrough with AlexNet (Krizhevsky, Sutskever,
and Hinton, 2012) beating the Imagenet (Deng et al., 2009) challenge by a wide margin. Big
data sets like the Imagenet data set with over 1M examples, and better hardware enabling
the storage of large networks in memory and train them in reasonable time were the major
factors enabling the success of deep neural networks.

3.2.2 Basic Architecture

The major aspects of a parallel distributed processing model like a neural network are defined
by Rumelhart, Hinton, and McClelland, 1986. Several processing units with a state of acti-
vation and an output function for each unit are connected according to a particular pattern.
There is a propagation rule for forwarding of activations, an activation rule for combining
the incoming inputs and a learning rule. Lastly it must be situated within an environment.
Feed-forward neural networks are commonly organized in layers of simple neurons. Each
unit is modeled as a linear combination of the inputs with an activation function which
is applied element-wise (Goodfellow, Bengio, and Courville, 2016, p. 174). Historically this
was a threshold function (Rosenblatt, 1958), but current implementations use either a logistic
sigmoid function, tanh or rectified linear functions (Jarrett et al., 2009). The Rectified Linear
Unit (ReLU) is found in practically all modern approaches due to superior performance (Nair
and Hinton, 2010) and observations from neuroscience (Glorot, Bordes, and Bengio, 2011).
The units are organized in layers with an input and output layer and one or more hidden
layers in between (see Figure 3.2). The input layer generally just passes on the input data
while the activation of output units is tailored toward the task. Most commonly the output
unit’s activation function is a linear function for Gaussian, a sigmoid function for Bernoulli
or softmax for Mulitnoulli output distributions (Goodfellow, Bengio, and Courville, 2016,
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Figure 3.3: Example of a very simple CNN

pp. 181-187). The activation functions also determine the loss functions used for determining
the discrepancy between ground truth and prediction in supervised learning.

Hidden layers form the body of the neural network, providing the processing power to
solve complex problems. Hidden units use ReLUs or units with functions derived from it
(Goodfellow, Bengio, and Courville, 2016, pp. 191-195), e.g. leaky ReLU (Maas, Hannun,
and Ng, 2013) or maxout units (Goodfellow, Warde-Farley, et al., 2013). Deep learning
networks are characterized by having a significant number of hidden layers, e.g. up to 152
layers in Residual Networks (ResNet) (He, X. Zhang, et al., 2016).

3.2.3 Convolutional Neural Networks

Convolutional neural networks (CNN) use the convolution instead of the simpler linear com-
bination and are suited for processing of uniformly sampled data, e.g., 1D time-series, 2D
images or 3D videos. The convolutional kernel is applied to every position of the input in
the simplest case and generates a feature map. A convolutional layer has usually several
channels, each representing a different feature map generated by a specific kernel. The con-
volution operation is again followed by a rectifier linear function as an activation function.
CNNs also use pooling operations which apply a statistical operation to a region of the fea-
ture map, e.g. maximum pooling (Zhou and Chellappa, 1988) which replaces the region with
the pooled value (Goodfellow, Bengio, and Courville, 2016, pp. 331-345). Often the pooled
maps are reduced in resolution, effectively performing sub-sampling. Figure 3.3 shows these
stages together with fully-connected output layers.

3.2.4 Neural Networks as Classifiers

Feed-forward networks are commonly used as discriminative classifiers, learning to map fea-
tures to classes, or, in other words, the conditional probability distribution of classes given
the features. In contrast to classical machine learning approaches, neural networks learn the
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features and their mappings while traditional machine learning relies on hand-crafted feature
extractors, learning the mapping only (Goodfellow, Bengio, and Courville, 2016, p. 3-5).

Deep learning with CNN-based approaches has become remarkably successful over the last
decades. A common theme was the increase in depth of the networks, from LeNet with five
layers (LeCun, Haffner, et al., 1999) over AlexNet with eight layers (Krizhevsky, Sutskever,
and Hinton, 2012), VGG’s 19 layers (Simonyan and Zisserman, 2014), GoogLeNet’s 22 layers
(Szegedy et al., 2015) to ResNet’s 152 layers (He, X. Zhang, et al., 2016). Unfortunately, the
infinite addition of layers did not turn out to be the almighty solution since networks run into
degradation problems when they become too deep. The performance eventually saturates or
even decreases if network become too deep. This problem was addressed by the introduction
of special buildings blocks for CNNs, e.g., Inception Units (Szegedy et al., 2015), Residual
Units (He, X. Zhang, et al., 2016) or Dense Blocks (G. Huang et al., 2017). Inception units
feature parallel micro-pathways, including 1x1 convolutions from the “network-in-network”
approach (Lin, Chen, and Yan, 2014). They grow in width instead of depth while keeping
the number of parameters within the feasible range. Residual units, like the name suggests,
compute a residual which is added to the previous input layer, thus avoiding the degradation
problem, and allowing for very deep networks. Dense blocks add additional connections
between layers, i.e., a layer is connected to every subsequent layer within a block.

Originally applied to the image domain for object recognition (Krizhevsky, Sutskever, and
Hinton, 2012) they have been applied to various data types and domains, including human
activity recognition.

3.3 Human Activity Recognition

Human Activity Recognition (HAR) very broadly aims at the analysis and recognition of
human actions using information obtained from sensors (Beddiar et al., 2020). It has become
a major field of research due to its relevance for video surveillance (Ji et al., 2013), video
retrieval (Ramezani and Yaghmaee, 2016), human-computer interaction (Choi et al., 2008),
robotics (Koppula and Saxena, 2016) or autonomous driving (Ryoo and J. K. Aggarwal, 2011;
Rasouli and Tsotsos, 2018). It has grown very fast, producing a large amount of literature
(Beddiar et al., 2020).

Action and activity are terms often used synonymously though some authors distinguish
between them. J. Aggarwal and Ryoo, 2011 describes actions as a subset of activities, defined
as single person activities, and distinguished from gestures (elementary body movements, e.g.,
raising an arm), interactions (activities involving two or more people and/or objects, e.g.,
shaking hands) and group activities (a group of people acting together, e.g., marching). In
this work the terms are used synonymously.

Activity recognition attempts to classify what is happening inside a specific time frame
given the sensory data. It can be distinguished from action prediction which attempts to
predict what will happen after a specific time frame (J. Aggarwal and Ryoo, 2011). Examples
for action prediction can be found in Ryoo, 2011; Kong, Kit, and Y. Fu, 2014; Kong, Tao,
and Y. Fu, 2017. The activity recognition task can be defined more formally as a set of
predefined activities with sensor readings at time points for which a model predicts the
activity sequence based on the sensor readings. The model minimizes the discrepancy between
predicted activities and ground truth activities typically by utilizing a positive loss function
(J. Wang et al., 2019).

There is a variety of sensor types which have been used for HAR and can be broadly divided
into sensors carried on the body, e.g., accelerometers, object sensors, e.g., markers or Radio
Frequency Identifier (RFID) tags placed on objects, and remote sensors, e.g., cameras (J.
Wang et al., 2019). The modalities used for HAR can be aquired directly, e.g., RGB video,
skeleton data from motion capturing, or extracted from another modality, e.g., skeleton data
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from RGB video or depth video, optical flow from RGB video, etc.

3.3.1 Classical Machine Learning Approaches

HAR methods can also be divided into those with hand-crafted and with learned features,
stemming from the distinction between machine learning approaches. The hand-crafted meth-
ods employ feature extraction at space-time interest points (STIP) (Laptev, 2005), densely
sampled (Uijlings et al., 2015) or along trajectories (H. Wang et al., 2013). The most used
descriptors are Histogram of Oriented Gradients (HOG) (Dalal and Triggs, 2005; Laptev
et al., 2008), Histogram of Optical Flow (HOF) (Laptev et al., 2008) and Motion Boundary
Histograms (MBH) (Dalal, Triggs, and Schmid, 2006). Further proposed were Fourier-based
viewpoint invariant motion descriptors (Weinland, Ronfard, and E. Boyer, 2006), anticipa-
tory temporal conditional random fields (Koppula and Saxena, 2016) or 3d cuboid descriptors
(Xia and J. K. Aggarwal, 2013). The descriptor are often aggregated by super-vector based
encoding methods, e.g., improved Fisher-Vectors (iFV) (Perronnin, Sanchez, and Mensink,
2010), super-normal vector (SNV) (X. Yang and Tian, 2014) or Vector of Locally Aggregated
Descriptors (VLAD) (Jégou et al., 2012).

3.3.2 Neural Network Approaches

In the last decade the field has moved more towards neural network approaches, either as end-
to-end solutions or connecting classical machine learning with deep learning. Deep neural
networks (DNN) served as feature extractors, e.g., from images with 2D CNNs classified
with a Support Vector Machine (SVM, Cortes and Vapnik, 1995) (Kong, Tao, and Y. Fu,
2017). They were also used as classifiers for hand-crafted features. Vepakomma et al., 2015
extracted features from wearable sensors, i.e., statistical information from acceleration data,
and processed the data with a DNN. Walse, Dharaskar, and Thakare, 2016 used sensor data
obtained from a smartphone, performed a PCA and classified them with a DNN.

3.4 Unimodal Human Activitiy Recognition with Deep
Neural Networks

RGB video data is one of the most widely used modalities for activity recognition. In terms
of processing, it can be treated either as a series of 2D images, each processed independently
with a CNN, or as spatio-temporal data processed by 3D CNNs.

Ji et al., 2010 was among the first to use a 3D CNN for HAR. Being developed before
AlexNet (Krizhevsky, Sutskever, and Hinton, 2012), the network had a rather shallow ar-
chitecture with six layers and resembled the HMAX model (Serre, Wolf, and Poggio, 2005;
Jhuang et al., 2007). In contrast to HMAX where the features were given by a Gabor filter
bank, the CNN was trained to learn the feature representation in Ji et al., 2010. Ji et al.,
2013 extended their model (Ji et al., 2010) by an auxiliary feature extraction path. The sec-
ond path used hand-crafted features (Scale-invariant feature transform (SIFT) (Lowe, 2004))
for regularization of the CNN. G. W. Taylor et al., 2010 also used a 3D convolution, but it
was only one layer in a multi-stage approach, consisting of a convolutional Gated Restricted
Boltzmann Machine (convGRBM), 3D convolutional layer, abs rectification and spatial and
temporal pooling layers. Tran et al., 2015 proposed C3D, a 15-layer 3D CNN, which was also
used as a feature extractor with a linear SVM as the final stage in their work. They inves-
tigated the dimensionality of spatio-temporal kernel size for the HAR task and found that
equally sized kernel performed best (3x3x3 in their work). The 3D convolutional architecture
performed well on many data sets and the idea was adopted by others (Varol, Laptev, and
Schmid, 2018; Qiu, Yao, and Mei, 2017). Qiu, Yao, and Mei, 2017 introduced Pseudo-3D
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residual units which took inspiration from ResNet (He, X. Zhang, et al., 2016) used for image
processing. They proposed several designs for the 3D residual unit, separating spatial and
temporal convolutions and processing them sequentially or in parallel.

3.4.1 Human Activity Recognition with Deep Learning on Skeleton
Data

Skeleton data consist of joint position of the human body over time, stated as 3d-coordinates
within a frame of reference. They can be directly measured with motion tracking systems.
They usually consist of several cameras with known positions, estimating the position of
multiple joints within the cube spanned by the system. These setups are generally expansive
and only usable in labs but offer good precision. The Microsoft Kinect is an affordable
sensor which can extract joint information from a depth image (Shotton et al., 2011). Joint
information can be also extracted from RGB video through pose estimation methods (He,
Gkioxari, et al., 2017; Pavllo et al., 2019).

In CNN-based approaches the joint positions are sometimes transformed into 2D struc-
tures and processed by 2D CNN. Color coding for temporal dynamics and treating the joint
positions as 2D data (Y. Hou et al., 2018), using one image dimension for coding of the
spatial structure and the other for temporal dynamics (Du, Y. Fu, and L. Wang, 2015) or
projecting the 3D joint positions onto a 2D plane (C. Li et al., 2017) were proposed for using
2D CNN for HAR. Pham et al., 2018 takes the approach from Du, Y. Fu, and L. Wang,
2015 and maps joints to pixel positions, carefully arranging them according to human body
physical structure. They use a ResNet for the actual task. Z. Yang et al., 2018 used a tree
structural skeleton image and introduced a long-sequence attention mechanism while pro-
cessing the data with a 2D ResNet. P. Zhang et al., 2019 use the skeleton to image mapping
from Du, W. Wang, and L. Wang, 2015, but add a view adaptive to approximate virtual
viewpoints on the skeleton. The networks used here were AlexNet (Krizhevsky, Sutskever,
and Hinton, 2012), ResNet (He, X. Zhang, et al., 2016), a recurrent neural network (RNN)
and a combination of CNN and RNN.

CNN-based approaches can treat the x,y, z-position of joints as separate time series and
process them with a time convolutional network (T. S. Kim and Reiter, 2017).

3.4.1.1 Optimal Depth for CNN with Simple Residual Units

This section summarizes our publication “Deep Residual Temporal Convo-
lutional Networks for Skeleton-Based Human Action Recognition”.

As previously stated in 3.2.4 the base units and depth of a network are important factor
for the performance of a CNN. In our paper (Khamsehashari, Gadzicki, and Zetzsche, 2019)
we have investigated this aspects for residual units, their architectural organization and
the overall depth of the network. The task used for the investigation was human activity
recognition with skeleton data.

Pham et al., 2018 has investigated residual unit networks (ResNet) for depth between 20
and 110 layers and achieved good results with skeleton data for HAR. Interestingly a tem-
poral convolutional network approach with a modified residual (Res-TCN) unit has achieved
comparable results with a much shallower 11-layer architecture (T. S. Kim and Reiter, 2017).
The modified units (Figure 3.4c) are simpler than the originally proposed for the image
domain (He, X. Zhang, et al., 2016) (Figure 3.4a) or skeleton data (3.4b).

We systematically analyzed the Res-TCN architecture with depth ranging from 11 to 152
layers, using two variants of the architecture called Deep Res-TCN-3 and Deep Res-TCN-4.
The evaluation was done on the NTU RGB+D data set (Shahroudy et al., 2016), at that
time the largest set featuring multiple modalities (RGB, depth and IR video and skeleton
data) with more than 56k training videos across 60 action classes..
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Figure 3.4: The basic residual unit in different approaches. (a) original ResNet (He, X. Zhang,
et al., 2016); (b) improved ResNet (Pham et al., 2018); (¢) Res-TCN (T. S. Kim
and Reiter, 2017) (Source: Khamsehashari, Gadzicki, and Zetzsche, 2019).

Deep Res-TCN-3 sticks with the original architecture of Res-TCN (T. S. Kim and Reiter,
2017), keeping the number of blocks between down-sampling layers at 3, but with additional
layers per block. We chose this setting to evaluate the performance of the simpler residual
units while remaining as directly comparable as possible. Deep Res-TCN-4 uses a 4-block
scheme and stems from the original ResNet architecture (He, X. Zhang, et al., 2016; Pham
et al., 2018), using 4 blocks between down-sampling as shown in Figure 3.5 We exchange
the original residual units with the simpler one to see whether it limits the performance.
In addition to testing the influence of depth on the two ResNet architectures with simple
residual units we also tested the influence of hyperparameters found in our paper Gadzicki,
Khamsehashari, and Zetzsche, 2018. We used the improved parameters for a further test with
the Res-TCN-4 architecture to disentangle the connection between of hyperparameters and
architecture. The performance was measured by the accuracy for cross-view and cross-subject
tasks.

The main result is that all deeper variants provide a better classification than the 11-layer
Res-TCN (T. S. Kim and Reiter, 2017) and the 56-layer ResNet (Pham et al., 2018). The
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Figure 3.5: Deep Res-TCN-4 architecture with 34 layers (Source: Khamsehashari, Gadzicki,
and Zetzsche, 2019).
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optimum though is not at the deepest architectural variant, but at rather moderate depth of
18 layers for Deep Res-TCN-4 and 34 layers for Deep Res-TCN-3. For deeper configurations
the performance levels off or decreases slightly. This has probably little to do with the
architecture in terms of number of layers and blocks (Pham et al., 2018 reaches optimal
performance with 56 layers with continuous increase up to that depth), but rather with the
simpler design of the residual units. Though He, X. Zhang, et al., 2016 claim that ResNet
does not suffer from degradation problems, the simpler units from T. S. Kim and Reiter,
2017 seem to do it, possibly due to having less expression power with one convolution only.

Even though our results were better than the Res-TCN approach when published, they
were surpassed for cross-subject (Z. Yang et al., 2018) but not for cross-view. In (Gadzicki,
Khamsehashari, and Zetzsche, 2018) we have shown that with an appropriate tuning of the
hyperparameters for training of the original Res-TCN, it can outperform the basic ResNet
approach for cross-subject. The best performing model for unimodal skeleton data is Shi
et al., 2020 right now (April 2021).

3.5 Multimodal Activity Recognition with Neural
Networks

Multimodal processing in the stricter sense refers to the processing of data obtained from
different sensor types. We use the term also for modalities which are derived from one sensor
source, e.g., RGB video and optical flow are different modalities even though the optical flow
stems from the RGB video.

3.5.1 Multisensory Processing in Human Perception

Human perception generally involves multisensory processing and can be described as a
unified percept of different sensory information sources (Recanzone, 2009). The ventriloquist
effect lets us assign the auditory sensory information from the puppeteer to the moving mouth
of a puppet as perceived by the visual system (Radeau and Bertelson, 1977). McGurk and
MacDonald, 1976 showed in a classic experiment how the disagreeing visual and auditory
sensory information form the perception of something entirely different (auditory stimulus
'ba-ba’ and visual stimulus 'ga-ga’ result in 'da-da’ perceived).

Multisensory processing can be described as the interaction between sensory modalities
during perception, i.e., one sensory modality can influence another modality during its pro-
cessing. The goals are to increase the accuracy of perception and the control of perceptually
guided actions (Briscoe, 2016). The tracking of an object, e.g., an animal in the ground
cover, might be significantly easier with visual and auditory sensory information than with
one modality alone. Objects with similar visual appearance might become distinguishable
with additional tactile or olfactory information. The integration of multiple sensory modal-
ities, once a common source has been identified, is another form of multisensory processing
(Briscoe, 2016).

Areas of higher-order cognition like the neocortex are believed to process mostly multi-
sensory information (Ghazanfar and Schroeder, 2006). Traditional models assume low-level
processing of sensory information to be unimodal (Felleman and Essen, 1991), but there is
growing evidence for multisensory interactions in the early stages (Schroeder and Foxe, 2005;
Ghazanfar and Schroeder, 2006). Auditory-visual interactions have been shown to happen
within 200 msec after the stimuli were presented, with earliest observations of interaction
patterns in the visual cortex after 40 msec (Giard and Peronnet, 1999). There is evidence
for connections from the auditory cortex (A1) to visual cortex (V1) (Falchier et al., 2002).
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3.5.2 Exploring Fusion Strategies for Multimodal Activity Recognition
with CNN

The fusion of multiple sensory sources is an established concept in science and engineering.
The data fusion process can be defined as “associating, combining, integrating and mixing
data provided by multiple spatio-temporal data sources” (Bellot, A. Boyer, and Charpillet,
2002). The general goal is to increase the performance of a system which uses the sensory
data. More specifically, Bellot, A. Boyer, and Charpillet, 2002 proposed four potential gains
of this process:

e Gain in representation: a higher level of abstraction or granularity with richer
semantic can be reached by fusion, compared to the individual data sources.

e Gain in certainty: the fusion process introduces a growth in belief on the data.

e Gain in accuracy: the fusion process decreases the standard deviation, noise and
errors of the data.

e Gain in completeness: the fusion process brings new information to the knowledge
about the environment.

Generally fusion of different modalities in machine learning aims at improving the system
performance regarding e.g., recognition accuracy or robustness towards noise data. By using
multi data source, potential correlations between them might be exploited, helping to dis-
ambiguate samples. BaltruSaitis, Ahuja, and Morency, 2019 state five challenges to relating
multiple modalities:

e representation of multimodal data that exploits the complementary and redundant
data sources,

e translation of mapping of modalities to another,

e alignment of elements from different data sources,

e fusion of multiple modalities for prediction, and

e co-learning for transferring knowledge from one modality to another.

Fusion is one of the challenges for recognition tasks. The most common fusion approaches
are late and early fusion (D’mello and Kory, 2015) and can be distinguished by the position
within the processing pipeline where the fusion takes place.

Late fusion (Snoek, Worring, and Smeulders, 2005; Atrey et al., 2010) is the decision-based
fusion (Baltrugaitis, Ahuja, and Morency, 2019), basically integrating unimodal approaches
into one model for prediction. It is a very flexible method, allowing to combine sophisticated
models for modalities into a single model. Here the decisions of individual models, e.g., the
predictions in a recognition task, are fused by averaging or major voting. The major drawback
of this fusion method is the lack of exploitation of cross-correlations and interactions between
individual modalities (Baltrusaitis, Ahuja, and Morency, 2019).

For exploitation of cross-correlations and interactions individual modalities have to be
processed together, as in early fusion (Baltrusaitis, Ahuja, and Morency, 2019). It is a
feature-based fusion where raw data or early features from each data source must be aligned
and synchronized for processing with a single model which has to suit all modalities.

Halfway fusion (Liu et al., 2016) or middle fusion (Damer et al., 2019) place the fusion
point somewhere within the model. The model has to consists of several stages in order to
allow for it, like e.g., neural networks with multiple layers.

Between early and late fusion at the extreme ends, there exist hybrid fusion approaches
trying to combine the properties of both (D’mello and Kory, 2015). As an example, two

28



3.5. MULTIMODAL ACTIVITY RECOGNITION WITH NEURAL NETWORKS

modalities are fused in early fashion, but also processes unimodally in parallel and fused via
late fusion again (Wu, Cai, and Meng, 2005).

An overview of multi-sensory fusion for activity recognition can be found in Aguileta et al.,
2019 and B. Fu et al., 2020.

3.5.3 Multistream Networks

Multi-stream networks were introduced by Karpathy et al., 2014 in the form of multireso-
lution CNNs. The network used 3D convolutions with an architecture similar to AlexNet
(Krizhevsky, Sutskever, and Hinton, 2012). From a video, a foveal stream was extracted by
taking the center pixels in full resolution and a context stream was taken by sub-sampling
the video. This organization is inspired by the foveal and peripheral processing of the visual
system. Both streams served as input to the network and were fused in several ways for
comparison. While the model by Karpathy et al., 2014 showed mixed results regarding the
recognition performance in comparison to models using hand-crafted features or unimodal
CNNs the general idea of multistream networks was picked up by others.

Simonyan and Zisserman, 2014 used a spatial and temporal stream by adding dense optical
flow to the original RGB video. Dense optical flow is computed for every pixel in an image and
represents the displacement vector in horizontal and vertical position between two images.
The input was processed by a 2D CNN with five convolutional, three pooling, two dropout and
a final softmax layer. The video and optical frames were processed individually, effectively
performing HAR from still images. The individual results were combined in a late fusion
manner at the end by averaging or serving as input to a SVM. The model outperformed other
approaches which can be generally attributed to the information about temporal dynamics
provided by the optical flow path. Individually the optical flow path performed better than
the spatial path, but the fusion of both improved the results.

Feichtenhofer, Pinz, and Zisserman, 2016 extend the model by fusion at different levels of
the network. The processing was done frame by frame with models from object recognition
(Simonyan and Zisserman, 2015). They investigated different strategies for late and mid-level
fusion, differentiating between fusion for spatial and temporal streams. Some fusion strategies
involved fusing twice by concatenating spatial and temporal path into a single path while
maintaining the temporal path and fusing it again late. The double fusion strategy performed
well but had the consequence of a significant increase in training parameters. A much simpler
late fusion of softmax layers performed nearly equally well with a much smaller overhead.

Carreira and Zisserman, 2017 merged the ideas of 3D CNNs (Ji et al., 2010; Ji et al., 2013;
P. Taylor et al., 2015; Tran et al., 2015; Varol, Laptev, and Schmid, 2018) and two-stream
networks (Simonyan and Zisserman, 2014; Feichtenhofer, Pinz, and Zisserman, 2016) into
the Inflated 3D CNN (I3D). The two streams were RGB video and optical flow which were
merged via late fusion. The 3D CNN was an inflated version of a variant (Ioffe and Szegedy,
2015) of the Inception network (Szegedy et al., 2015). Inflated means that a pre-trained 2D
CNN is extended by a third dimension resulting in a kernel with 2D weights which remain
constant in the time dimension for initialization of the network. The Inception architecture
(Figure 3.6) aims at firstly approximating a local sparse structure by dense components and
secondly reducing dimensions wherever computational requirements would increase too much
(Szegedy et al., 2015). The two-stream I3D model outperformed other approaches with its
late fusion of streams. While Carreira and Zisserman, 2017 have investigated other ANN
approaches beside I3D in their works, they did not investigate other fusion strategies.

3.5.3.1 Late Fusion of Multiple Modalities

This section summarizes our work published in “Multimodal Convolutional
Neural Networks for Human Activity Recognition”.
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Figure 3.6: (a) Structure of an Inception-v1 block. (b) Layout of the Inception-vl I3D CNN
(Source: Gadzicki, Khamsehashari, and Zetzsche, 2020, adapted from Carreira
and Zisserman, 2017)

In our paper (Gadzicki, Khamsehashari, and Zetzsche, 2018) we have investigated late fusion
with convolutional neural networks for activity recognition. We have used Inception-vl CNNs
(Szegedy et al., 2015), pre-trained on the “Kinetics” data set (Kay et al., 2017), for RGB and
optical flow and Res-TCN CNN (T. S. Kim and Reiter, 2017) for skeleton data which was
trained from scratch. Our optical flow has been computed with “Flownet 2.0” (Ilg et al.,
2017). We fused the networks in a late fusion fashion and trained the output (dense) layer
only. We tested our approach on the “NTU RGB+D” Shahroudy et al., 2016 data set which
provides several modalities in the form of RGB video, depth images and skeleton data. It
was the largest freely available data set for multiple modalities, featuring over 56k examples,
60 classes and recordings from three different viewpoints. Common evaluations for this data
set are cross-subject and cross-view.

During the training of the skeleton network, we found better hyperparameters which de-
livered state-of-the-art performance in terms of cross-subject recognition. Our late fusion
results were dominated by the skeleton network; thus fusion of additional modalities did not
improve the performance. The shortcoming of our approach was to use the Inception network
merely as a feature extractor for RGB and optical flow. Even though it was trained on the
very large “Kinetics” data set and should generalized well, that was not enough to compete
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with a skeleton network which achieved comparative accuracy on the “NTU RGB-+D” data
set.

3.5.3.2 Comparison of Early and Late Fusion

This section summarizes our work published in “Farly vs Late Fusion in
Multimodal Convolutional Neural Networks”.

In our paper (Gadzicki, Khamsehashari, and Zetzsche, 2020) we compared the performance
of the I3D architecture for early and late fusion. For early fusion either raw data or early
features, e.g., the output of the first convolutional layer, can be combined. Early fusion for
raw data is not necessarily a trivial task since data from different sources are rarely already
spatio-temporally aligned regarding resolution or sampling frequencies. Thus, they require
a certain amount of pre-processing before being processed by a CNN. The fusion of early
features can avoid some of the alignment issues by making sure that the output feature maps
are aligned and so can be concatenated trivially. If the input data agree in dimensionality,
e.g., all input data are 3D data structures as in the case of videos, the feature map alignment
can be enforced by selection of appropriate parameters of the convolutional layer. Late fusion
is much easier to realize, since the data sources can be processed individually and only the
final outputs are merged. For every modality, a specialized CNN (or other classifier) tailored
for the data source can be used if they agree on the output representation of class scores.
Figure 3.7 shows the network structure for both, early and late fusion.

Action Action
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( 3D ConvNet ] (3D convNet | [ 3D ConvNet
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[ layers ] [ layers ]
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Figure 3.7: CNN with (a) early fusion and (b) late fusion. The modalities shown here are
RGB images and Optical Flow. For the early fusion, the action label is directly
output by the logits layer of the fused network. For late fusion the outputs of
the logits layers of the individual CNNs for each modality are summed (Source:
Gadzicki, Khamsehashari, and Zetzsche, 2020).

In our implementation we used early fusion by concatenating the outputs of the first
convolutional layer and late fusion by summing the outputs of the softmax layer.

As the basic architecture we used the “Inception v1 I3D” (Carreira and Zisserman, 2017)
for video data types and extended it to allow for fusion at arbitrary points in the networks
by concatenating the outputs of the previous layers. For the processing of skeleton data we
used Res-TCN (T. S. Kim and Reiter, 2017). We tested our approach on the “NTU RGB+D”
(Shahroudy et al., 2016) data set.
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For our early vs late fusion comparison we have used RGB video and optical flow which
has been computed with “Flownet 2.0” (Ilg et al., 2017). In addition, we also used late fusion
for RGB video and skeleton data.

As a result, any fusion improved the accuracy in comparison to unimodal processing.
Among the fusion strategies tested, early fusion performed best.

3.5.3.3 Fusion of CNN for HAR by others

In the ActionVLAD model Girdhar et al., 2017 use a Vector of Locally Aggregated Descriptors
(VLAD) implemented as a network layer and an extension from (Arandjelovi¢ et al., 2018).
The ActionVLAD layer abstracts from the features by assigning the features to clusters,
computing the difference between feature and prototype, and aggregating the differences for
a video. The network was tested for early, late and concat fusion of the ActionVLAD layer.
The concat fusion is realized in a way that would resemble a middle fusion at the last feature
layer when compared to the fusion strategies described so far. The early fusion has little to
do with early fusion as described in the other approaches above as the VLADs are taken from
the last feature layers. In this approach late fusion performed best.

Temporal linear layer (TLE) (Diba, Sharma, and Van Gool, 2017) compute a low-dimensional
embedding of features maps from convolutional layers. It allows to aggregate features from
short video sequences or single frames into longer sequences. It was tested with late fusion
on different network architectures and performed better than the original networks.

AdaScan (Kar et al., 2017) features adaptive scan pooling of frames from video sequences
regarding the importance of a frame for the recognition of the activity. The scan pooling was
added on top of a C3D network (Tran et al., 2015) and tested for RGB video and optical
flow, merging the streams with late fusion. The addition of adaptive scan pooling improved
the performance in comparison to the original network.

Another encoding methods for CNN features was proposed as Spatio-Temporal Vector
of Locally Max Pooled Features (ST-VLMPF) (Duta et al., 2017). Features and locations
are clustered according to their similarity to learned prototypes and max pooled over space
and time resulting in a spatio-temporal feature vector representation, abstracted from the
CNN’s features maps, but preserving information about features and their positions. The
ST-VLMPF representation was extracted from 2D CNNs for RGB and optical flow images
and from a 3D CNN for RGB video. This approach performed better than other multistream
approaches (Karpathy et al., 2014; Simonyan and Zisserman, 2014) at that time.

Other authors have investigated early fusion in other settings than RGB video with optical
flow. Liu et al., 2016 used a “Faster R-CNN” (Ren et al., 2017) for pedestrian detection.
Their modalities were RGB and thermal images which were fused in early, late, and middle
fashion before the region proposal network split off. They found that middle fusion performed
best, but the other fusion strategies all performed better than the unimodal network.

Damer et al., 2019 used a 2D Inception network (Szegedy et al., 2015) for biometric rep-
resentations (iris and face recognition in their work). They suggested early, late and middle
fusion for this network and found that the multimodal representations were more discrim-
inative than the unimodal. Furthermore, the early and late fusions performed better than
middle fusion.

Apart from the fusion of modalities into one data stream there are also considerations for
interaction between streams on multiple levels. Spatiotemporal multiplier networks (Feicht-
enhofer, Pinz, and Wildes, 2017) add additive or multiplicative interactions at every layer
of a spatiotemporal Resnet (Feichtenhofer, Pinz, and Wildes, 2016). The injection was per-
formed between the residual units, either directly into the result of a residual block (sum of
residual and previous block) or into the input of the residual only. Generally unidirectional
from the motion to the spatial stream, but bidirectional interactions were tested also. The
injection into the residual computation generally performed best, with addition performing
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better than multiplication, even though by a relatively small margin.

Beyond optical flow, skeleton data and trajectories are important modalities which show
promising results. Action machine (Zhu et al., 2018) uses RGB video as an input, but
extracts the skeleton information from this stream as well. The two streams are fused with
late fusion. The best performing activity recognition model on the “NTU RGB+D” data set
is currently (Davoodikakhki and Yin, 2020). They perform hierarchical action classification
with network pruning. For RGB video with trajectories of interest points trajectory-pooled
deep convolutional descriptors TDD (L. Wang, Qiao, and Tang, 2015) are used. Context
stemming from objects can also be added as an information source. Bobick and Davis, 2001
suggest early fusion via Motion History Images (MHI) for RGB, depth, skeleton from RGB
and context from object recognition.

3.6 Human Activity Recognition for Robotics

3.6.1 Human-Robot-Interaction

Human activity recognition plays an important role for the development of robots operating
in an environment together with humans. One aspect is the Human-Robot-Interaction (HRI)
which covers a broad field of sub-topics. A recent taxonomy for HRI (Onnasch and Roesler,
2020) defines several categories enabling a modular description of scenarios in which humans
and robots operate, based on previous HRI framework models. The categories cover the field
of application (e.g., industry, service), the exposure to the robot (e.g. in a laboratory or in the
field), the robot task specification (e.g. transport, manipulation, information exchange), the
robot morphology (e.g. appearance, movement of the robot), the degree of autonomy (e.g.
decision making, action implementation ), the human role (e.g., supervisor, cooperator), the
composition (number of human vs robots), the communication channel (input and output)
and proximity between human and robot (physical and temporal).

Human activity recognition has impact on several of these categories. For a robot operating
in a domestic environment and being allowed a certain degree of autonomy, it will be crucial
to recognize what humans are currently doing to assist them if necessary, avoid them if the
robot would disturb them or simply carry out tasks instead of the human. For a high level of
autonomy, it is also important to ask how the robot can acquire its skill set. Current robotic
systems are equipped with carefully designed routines for manipulation of their environment.
Enabling a robot to learn new skills or improve current ones, e.g., by demonstration by
humans, could greatly improve a robot’s performance.

3.6.2 Human Activity Recognition in Human-to-Robot Pipeline

This section summarizes our work published in “From Human to Robot
Everyday Activity”.

In Mason, Gadzicki, et al., 2020 we present a pipeline for the analysis of human activ-
ities data. This research has been conducted as part of the collaborative research center
“EASE” (“Everyday Activity Science and Engineering”, http://www.ease-crc.org) which has
the long-term goal to develop cognitive robot capable of performing everyday activities.
Within our subproject the goal was to collect data from human activities and transform
them into narrative-enabled episodic memories (NEEMsS).

The pipeline as shown in Figure 3.8. It starts with recording of human activities in context
of kitchen related activities. The determined scenario was setting the table for a given
context, given by a set of constraints. Multiple modalities have been recorded from human
subjects, including RGB video from seven different perspectives, audio from scene and head-
worn microphone, skeleton joint data from motion tracking, eye tracker data and biosignals
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Figure 3.8: The human activities data analysis pipeline (Source: Mason, Gadzicki, et al.,
2020).

from muscle and brain activity (Mason, Meier, et al., 2018). The resulting EASE Table
Setting Dataset (EASE-TSD) includes 70 sessions of six or more trials.

The data were annotated manually utilizing the EASE Ontology which is designed for
knowledge representation and inference for cognitive robots. The annotation scheme reflects
the ontology by using hierarchically structured levels of granularity to describe the human
activities. It ranges from elementary motions (gestures in the terminology of J. Aggarwal
and Ryoo, 2011) of short duration (e.g. reach, grasp, lift) to actions of higher complexity
composed of the motions (e.g. picking, carrying an object) to high level task related activities
(e.g. planning, object retrieval). Multiple labels could be present at any time step, accounting
for actions taking place simultaneously.

Several automatic data annotators have been developed for the task of human activity
recognition. They different modalities and approaches, covering the whole range of data
source recorded. The multimodal HAR approach with convolutional neural networks (Gadz-
icki, Khamsehashari, and Zetzsche, 2020) described above (3.5.3) covers the analysis of RGB
video and skeleton data. The model has been adjusted to the constraints of the annotation
data in the EASE-TSD. There are different variants for the hierarchical annotation levels,
covering single levels but also two levels (action and gesture levels). The model output has
been changed to a multi-label prediction due to the possibility of multiple labels being simul-
taneously present. The output is a probability distribution over all labels which is usually
not required for other human activity datasets’.

Apart from the multimodal CNN approach there are more annotators for speech recognition
or HAR from biosignals. Together they allow to automatically annotate data based on all
available modalities.

The manual and automatic annotations must be transformed into a NEEM-specific format
which allows them to be stored, queried and visualized in the OpenEASE database. The
NEEM format agrees with the ontological structure used by the cognitive robot, thus enabling
the access and processing of human activity data. The OpenEASE database can also be used
by other researchers who might want to use the recorded data for development of models or
testing of their models.

To our knowledge this is the first attempt of developing a pipeline for the transfer of human
activity data to a robotic system with integrated automatic annotators. There are more
datasets which address a similar setting of kitchen related activities performed by humans.

IDatasets including multiple labels per sample are common for object recognition tasks though.
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“EPIC-Kitchens” (Damen et al., 2018) features video from a head-mounted camera recorded
during the activities performed by 32 subjects at home. “50 Salads” (Stein and McKenna,
2013) features recordings of meal preparations and includes RGB+D video and accelerometer
data from sensors mounted on the objects. “MPII Cooking Activities Dataset” (Rohrbach
et al., 2012) provides video recordings for 65 kitchen activities. “TUM Kitchen Dataset”
(Tenorth, Bandouch, and Beetz, 2009) provides video, fullbody motion capture data, RFID
tag and magnetic sensor readings from objects and the environment.

3.7 Contribution

In Khamsehashari, Gadzicki, and Zetzsche, 2019 we showed that simplified residual units
are not particularly suitable for very deep networks, but offer good performance at relatively
shallow depths.

Our investigation of late fusion for human activity recognition with convolutional neural
networks (Gadzicki, Khamsehashari, and Zetzsche, 2018) that late fusion does not necessarily
improve the performance if only the last layer of the network is trained. Our results were
dominated by the skeleton CNN which achieved state-of-the-art performance and delivered
best cross-subject recognition accuracy at the time of publishing.

In our paper Gadzicki, Khamsehashari, and Zetzsche, 2020 we have investigated early
fusion of modalities in comparison to late fusion and unimodal processing. We could show
that early fusion performed better than the other variants. Early fusion with convolutional
neural networks has been barely investigated in the past. It offers novel insights on fusion of
CNNs and shows an interesting direction for future development of multimodal recognition
with convolutional neural networks.

The work on a pipeline for transfer of knowledge from human subjects to robots (Mason,
Gadzicki, et al., 2020) is unique in its complexity and scope, being “the first to combine
multimodal data collection, hierarchical and semantic annotations, and ontological reasoning
to enhance cognitive robots” (Mason, Gadzicki, et al., 2020). Our contribution of an auto-
mated annotator for multimodal data represents an important puzzle piece for making data
recordings of human activities processable by robots.
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CHAPTER 4

Sensorimotor Perception and Navigation

The computational models covered in Chapter 2 and 3 are bottom-up, data driven. The mod-
els based on sensorimotor processing consist of a bottom-up part, but additionally features
a top-down, knowledge driven component.

In this chapter the basics of sensorimotor theory are covered in Section 4.1, the computa-
tional models in Section 4.2, and the application to Space exploration in Section 4.3.

4.1 Sensorimotor Theory

4.1.1 Saccadic Eye Movement

As mentioned in 2.1 the human eye has only a small area of high acuity, the fovea. To perceive
parts of our environment with high resolution (and in color) the fovea has to be directed at
specific points within our field of view. This is achieved with saccadic eye movements which
are extremely fast, abrupt movements. They are ballistic in nature, i.e., once initiated the
trajectory cannot be altered. If a saccade does not hit the intended target, a corrective
saccade follows up very briefly after the first one (Palmer, 1999, pp. 523-524).

Saccades take 150-200ms to plan and execute, the actual ballistic eye movement takes
typically 30ms and reaches speeds of up to 900° per second (Goldberg, Eggers, and Gouras,
1991). The eye fixates the region of interest for a variable amount of time, on average 300ms
per fixation, giving the visual system time to process the information (Palmer, 1999, p. 523).
Saccadic eye movement is not consciously perceived, even though the image motion during
a saccade is theoretically perceivable due to the pupil being open. It has been shown that
large moving objects at high velocity are perceivable (Burr and Ross, 1982) which would also
apply to the image during a saccade. The visual system does not provide information during
a saccade. This phenomenon is called saccadic suppression (Palmer, 1999, p. 523).

4.1.1.1 Saccadic Exploration

To fully explore a scene, an observer has to perform a large number of saccades. Due to
the limited size of the visual field covered by the fovea, the information gained from a single
fixation is low in relation to all the information available (Palmer, 1999, pp. 528-530). For
efficient exploration, a guidance system is necessary. Studies by Yarbus, 1967 have shown
that human observers fixate regions of interest (e.g. faces, objects). However, fixation points
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cannot be estimated from the structure of the image alone, they are task-dependent as well.
Noton and Stark, 1971 identified recurring sequences of fixations if one observer viewed an
image multiple times (with delay between trials). Though there was variation, and fixation
locations between observers did not agree, for a single observer they agreed for 65% of the
images.

These findings suggest that there is a) a mechanism to extract potentially relevant fixation
locations from the overall scene and b) a top-down cognitive mechanism selecting interest
points depending on a high-level task.

4.1.2 Sensorimotor Contingency Theory

In vision science it is generally accepted that the internal representation consist of multiple
channels, decomposing the visual sensory information according to specific features (Gins-
burg, 1986; Wiesel and Hubel, 1963; Hubel and Wiesel, 1977). It implies that there is a
neural image (Robson, 1981) integrating the visual information into a coherent perception.
There is also evidence for regions of neurons representing multiple spatial resolutions in the
visual areas in a graded fashion (Everson et al., 1998). Computational models reflect this
view by featuring multiple scale and orientation channels as in the HVS model or a set of
feature maps in CNNs.

The sensorimotor contingency (or dependency) theory (O’Regan and Noé, 2001) states
that there is no such neural image which integrates the details into a spatially consistent
representation. Instead the external world serves as the representation (O’Regan, 1992) and
vision is treated as an exploratory activity. During exploration, the sensory information do
not change randomly but in a way governed by the modality. When an eye moves around the
projection of light on the retina changes in specific ways, e.g., the projection of a line might
change from a straight line (fovea directed at the line) to a curved line in the periphery (fovea
directed above the line). These shifts and distortions that appear during eye movement are
particular to the modality, defining the sensorimotor dependencies between the exploratory
action and the change in sensation. The visual information depends on the properties of
an object (size, shape, texture, or color) and its position in space (distance and angle to
the observer). By changing position and viewing angle the observer can effectively sample
the object’s properties. The sensory information will be distorted in a lawful way, basically
defining a property by the dependency of distortion and action. The brain will have to
abstract from the actual changes which are infinite in number while moving around and
describe them in a set of laws which then can be used to code specific object properties. Visual
perception is how features or cortical representation changes when movements are undertaken,
but the observer must have mastered the laws governing the sensorimotor contingencies of
the modality and actively perform the mastery (O’'Regan and Noé&, 2001).

Different modalities are governed by their respective sensorimotor dependencies. For the
auditory system walking will produce different sounds based on the ground (and footwear)
material while for the tactile system the amount of friction perceived when rubbing a surface
will define the material’s properties. Walking or rubbing are already abstracted actions as
for the biological system the pattern of muscle fiber activations through the nervous system
is most likely the encoding of an action. Proprioception (Tuthill and Azim, 2018) gives infor-
mation about the execution of an action and the change in sensation for a particular modality
codes the properties of objects or the environment by sensorimotor dependencies. New sen-
sorimotor contingencies can be learned, e.g. by augmentation of new sensory information
(Kaspar et al., 2014).

Not only object properties but the notion of space can be inferred by sensorimotor con-
tingencies (Philipona, O’Regan, and Nadal, 2003) without any prior knowledge about the
environment or the relations between input and output. An organism equipped with sensors
and actuators can learn by issuing random commands that there are sensory inputs which
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it can fully control by its commands and others which show no relation to the commands.
The organism can deduce that there is a body it can fully control and an environment it
has only partial control of. The sensory inputs regarding the body are proprioceptive and
regarding the environment exteroceptive (Kandel, J. H. Schwartz, and Jessell, 2000). With
this distinction the organism can try to understand the environment by monitoring changes
in exteroceptive sensor readings due to motor commands. Certain transformations of the
sensory input will depend on the order of commands issues. From these rigid transforma-
tions the organism can deduce geometry and the properties of the body-environment system.
Finally, the organism is able to navigate the environment with a set of laws governing the
relations between sensory input and motor commands expressed as sensorimotor contingen-
cies. Discovering the invariants in the sensorimotor laws enables the emergence of the notion
of space (Philipona, O'Regan, and Nadal, 2003).

Rachuy, 2020 proposed an algorithm for bootstrapping of mobile agents by processing of
sensorimotor interactions with its environment. The agent assigned geometric interpretations
to its motor actions utilizing Lie groups as a representation of geometric operations.

Ecological (Gibson, 1979) and Active Perception (Bajcsy, 1988; Ballard, 1991) are closely
related theories stressing the importance of actions for perception. For visual perception
Gibson, 1979 states that the environment affords viewing sensations, inviting an organism
to explore the environment. In active perception Ballard, 1991 sees an advantage for an
organism to execute behaviors based on visual information if the visual sensors are actively
controlled. The active control of actions are based on expectations about the outcome (Ba-
jesy, Aloimonos, and Tsotsos, 2018). For ecological and active perception, the actions are
means to acquire new sensory information while the action itself does not necessarily con-
tribute to the representation of the environment. In contrast the sensorimotor contingency
theory regards action as integral part of the representation, contributing information of same
importance as the sensory information (O’Regan and Nog, 2001).

4.2 Computational Models of Sensorimotor Processing

Although sensorimotor models have been extensively tested in psychology with human sub-
jects as well as other organisms (see Gallivan et al., 2018; H. E. Kim, Avraham, and Ivry,
2021 for a review) and in medicine (Hayes et al., 2018), computational models are scarce in
comparison.

Kuipers and Levitt, 1988 proposed a four-level spatial semantic hierarchy, consisting of
sensorimotor interaction, procedural behaviors, topological and metric mapping, as a cogni-
tive map representation for navigation and mapping. The sensorimotor level describes the
input-output relations between the agent and the environment. It is defined as a sequence
of view-action pairs. Kuipers and Levitt, 1988 furthermore describe three simulated systems
for indoor and outdoor scenarios which implement the spatial hierarchy. The simulated sen-
sory information is highly abstract, e.g., the “vision” in one system is the number of visible
landmarks.

4.2.1 Visual Perception

Schill et al., 2001 suggested a model motivated by the saccadic exploration process in human
vision for scene recognition. This system actively explores an image by performing saccades
represented as sensorimotor features. A sensorimotor feature SMF is a triple

SMF == (s4—1,m¢_1, St) (4.1)

with s;_1 being the sensory input in the location at the last time step, m;_1 the motor action
performed at the last time step in order to reach the new location which provides the sensory
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input s; at the current time step. The sensory inputs are locally limited, mimicking the
limited visual angle covered by the fovea. The motor action corresponds to the shift of gaze
during a saccade.

The potential fixation locations are points with the intrinsically two-dimensional signal
(i2D) which yield the least redundant information and correspond well with fixation location
by human observers (Zetzsche, Schill, et al., 1998). The extraction is performed by a nonlinear
i2D-selective operator (Zetzsche and Krieger, 2001) which is applied to the image. The feature
descriptor is extracted from linear orientation filters in the local image area. A scene can now
be represented by the potential saccades between fixation locations, or in other words the set
of sensorimotor features present in the scene. During supervised learning, after performing
a saccade on an image, the sensorimotor feature is considered as evidence for a particular
hypothesis (or class) and stored in the knowledge base. By performing saccades on an entire
training set with labels a frequency distribution of sensorimotor features for every sample can
be obtained. The system uses Dempster-Shafer Theory of Evidence (DS) (Dempster, 1967;
Shafer, 1976) for assigning belief mass to a set of hierarchical hypotheses which constitute
the knowledge base. The DS theory offers the advantage of representing uncertainty more
explicitly than with probabilities.

The system behavior is guided by Inference by Information Gain (IBIG) (Schill, 1997)
which is an adaptive strategy suited for situations of incomplete or inconsistent data. Within
the sensorimotor framework the idea is to select an action which has the highest expected
gain in information with respect to the current belief state. Figure 4.1 illustrates this process.
After performing a saccade and receiving new sensory data, the current belief state is updated.

= Eye movement Knowledge Base

(Ho
) @ ¢
)

@
Sensory Input @ @ @ @

/

Eye Movement with
Maximum Information Gain

Figure 4.1: The information gain is calculated based on the current sensory input and the
belief distribution in the hierarchy. The next eye movement is selected based on
the maximum information gain (Adapted from Schill et al., 2001).

The next action is selected by calculating the difference between the current and the potential
belief distribution after performing an action.

IBIG relies on a hierarchical representation of the hypothesis space where all leaf nodes are
objects (or finest object classes) and non-leaf nodes represent more abstract classes. While leaf
nodes are generally associated with the full set of sensorimotor features of an object or scene,
the non-leaf nodes carry a subset which is common to the subtree. The hierarchical structure
has practical considerations, reducing the computational complexity of inference in Dempster-
Shafer Theory (Gordon and Shortliffe, 1985), but is also motivated by the organization of
human brain functions. For the visual system it generally believed that the visual cortex is
organized hierarchically, abstracting from primitive patterns in the lower layers to complex,
abstracted features in the higher layers (Oram and Perrett, 1994). P. Taylor et al., 2015
showed in a data-driven analysis that cognitive functions are hierarchically ordered, forming
a continuum of functions (Figure 4.2). “ From tangible sensory inputs, symbolic content may
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Figure 4.2: Data-based, objective pyramid of cognition showing an oversimplified graphical
model of the information representation flow from sensory inputs (bottom) to
abstract representations (top) in human cortex. (Adapted from P. Taylor et al.,
2015)

progressively emerge as information is processed deeper into the brain’s structural network,
starting with inputs, and expanding in abstraction or refinement, resulting in intangible or
deep symbolic content in the structural pinnacle of the human brain network” (P. Taylor
et al., 2015).

4.2.1.1 Unsupervised Learning of Sensorimotor Hierarchies

This section summarizes our work published in “Hierarchical Clustering of
Sensorimotor Features”.

In the paper (Gadzicki, 2009) the author describes the approach to generate a hierarchy
of sensorimotor feature in unsupervised fashion. This was motivated by the fact that the
hierarchical hypotheses space described above was hand-crafted. A scene is represented by
full set of possible sensorimotor features, representing a fully-connected graph with potential
fixation locations as nodes and actions as edges. Since sensorimotor features are directional
each pair of fixation locations is represented by two sensorimotor features. The sensorimotor
features are abstracted through clustering with a Self-Organizing Map (SOM) (Kohonen,
1990; Kohonen, 2001) which is an artificial neural network with the property of creating a
spatially organized representation of features. During training of the SOM, it is fed with
all extracted sensorimotor features from the training set. The resulting representation is
spatially organized on a 2D-grid where similar features are mapped to the same node or a
neighboring one. After training of the SOM, a scene can now be represented by the frequency
count of activations of the SOM with the sensorimotor features of a scene being the input.
This procedure is illustrated in Figure 4.3.

The hierarchical representation was generated with agglomerative clustering methods with
the frequency distribution of activations serving as feature vectors of the samples. Starting
with singleton clusters for every object and applying Ward’s rule (Ward, 1963) for merging
of a pair of clusters, a dendrogram is build. The Tanimoto coefficient (Tanimoto, 1958) was
used for calculating the similarity of vectors.

This approach works well the training sets with a certain overlap. For instance, for an
hierarchy of objects it was beneficial to have different views of the objects with the overlapping
views.
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Figure 4.3: A set of sensorimotor features representing a scene is passed through a Self-
Organizing Map, resulting in a frequency distribution of the activations (Source:
Reineking et al., 2010).
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Figure 4.4: Two levels of hierarchical sensorimotor representations (Source: Reineking et al.,
2010).

4.2.2 Localization

This section summarizes our work published in “Bio-inspired Architecture
for Active Sensorimotor Localization”.

The system design from Schill et al., 2001 was extended to localization in a virtual envi-
ronment in our paper (Reineking et al., 2010), integrating the works from (Gadzicki, 2009;
Reineking, 2011; Zetzsche, Wolter, and Schill, 2008; Schill et al., 2001). The simulated agent
represents its environment based on sensorimotor features on a micro level for perception
and on a macro level for localization and navigation. On the micro level the agent analyzes
scenes by performing saccades on the sensory input acquired from the environment. On the
macro level the agent explores the environment by performing actions between positions in
the environment, obtaining views of the scene. The sensory information is given by the vi-
sual input at starting and end locations of the motor action. The motor action is defined
by a rotation, a translation and again a rotation. Figure 4.4 illustrates the two levels of
sensorimotor features.

Micro and macro level have their own hierarchical hypotheses space and are generated
by agglomerative clustering (Gadzicki, 2009) in unsupervised fashion. For the micro level
hypotheses space, views are sampled in the environment with individual views being the leaf
nodes of the hierarchy and classes of views being the non-leaf nodes. For the macro level
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the leafs represent individual rooms and non-leaf nodes room classes. For each node of both,
micro and macro level hierarchies, a numerical representation of the sensorimotor features
based on the SOM activations is stored.

The selection of the next action is based on the uncertainty minimization strategy from
IBIG (Schill, 1997). Given the current belief state and a set of potential actions the local
conflict uncertainty measure is used to select the action with the minimum expected uncer-
tainty. After the execution of the action the belief state is updated with the actual feature
observed.

4.2.3 Realization with Physical Hardware

A computational model of Sensorimotor Contingency (SMC) theory was implemented on a
simple robot (Maye and Engel, 2011; Maye and Engel, 2012). Their approach is based on
the assumption that “learning SMCs corresponds to determining the conditional probability
of making a sensory observation given an action and a context” (Maye and Engel, 2011)
and can be expressed with a Markov model. The system utilize a value system (Maye and
Engel, 2011) or utility function (Maye and Engel, 2012) to guide the robot’s behavior. The
sensorimotor features (or SMCs in these works) are represented by chaining of motor actions
and sensory observations which are stored in a tree structure. By exploring the environment,
the robot acquires a collection of SMCs describing the environment and enabling the robot
to predict the outcome of subsequent actions.

In Hégman, Bjorkman, and Kragic, 2013 a robot arm learns sensorimotor contingencies
through pushing of objects. The model uses a probabilistic representation based on Gaussian
Process regression. The sensorimotor features are represented by a function of a motor action
and previous sensory data (position and orientation of the object) mapping to new sensory
data after the action was executed. The system learned to successfully classify objects by
applying optimal action selection minimizing the conditional entropy of the class given an
action and random outcome.

In Nakath, Kluth, et al., 2014; Kluth et al., 2015 an approach for active sensorimotor object
recognition with an robotic arm is proposed. The system can use a robotic arm to move
around the object and inspect it from different viewpoints physically but also a simulated
arm in VR. It is also possible to feed images from a dataset. The system uses probabilistic
sensorimotor features as the representation. The feature descriptor for sensory input is either
GIST (Oliva and Torralba, 2006) or SURF (Bay, Tuytelaars, and Van Gool, 2006) features,
depending on whether the robotic arm is used or the image feed from a dataset. The features
are assigned to clusters stemming from previously learned k-means clustering. The resulting
sensorimotor features are processed by a classifier which computes the belief regard the class
of the object. The motor actions are selected bases on the uncertainty of the belief state
measured as entropy. The optimal action is based on the expected maximum information
gain, expressed as expected entropy.

Lanillos, Dean-Leon, and Cheng, 2017 suggested an approach to self-perception in robots,
enabling the robot to understand changes in sensory information it perceives. By combining
multisensory information from visual, proprioceptive, and tactile sensors with probabilistic
reasoning the robot learns to distinguish between cues inside and outside its body. Via
sensory contingencies the robot discovers usable objects and how to interact with them.

4.3 Application to Space Exploration

This section summarizes our publication “KaNaRiA: Identifying the Chal-
lenges for Cognitive Autonomous Navigation and Guidance for Missions
to Small Planetary Bodies”.
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Cognitive principles to perception and reasoning can be applied beyond earth as shown in
our paper on asteroid mining (Probst et al., 2015). The goal of the project was to develop new
approaches for autonomous navigation of spacecraft during deep space missions, e.g., explo-
ration of the main asteroid belt. During deep space missions spacecraft operate at distances
to earth which do not allow for real time communication. Time critical parts of missions must
be carefully controlled by predefined procedures, anticipating possible problems which might
occur during execution of a mission. Autonomous navigation in many mission phases is an
approach to overcome these shortcomings. The system was realized as a simulated mission to
the asteroid belt consisting of several mission phases covering transfer from parking orbit up
to the landing on an asteroid. The overall system architecture was inspired by cognitive agent
systems which follow objectives while holding and updating a belief over the current state of
the environment. The approach to decision-making was governed by integration of top-down
knowledge (a-priori knowledge about the environment, e.g. layout of the spacecraft, orbital
elements of celestial bodies) and bottom-up knowledge (fused sensory information) in the
spirit of works on sensorimotor perception (Schill et al., 2001) and navigation (Reineking
et al., 2010).

Various subsystems were designed based on information maximization and active percep-
tion as leading principles. Optimal rotation sequences for pointing of navigation instruments
towards celestial bodies were suggested based on active perception (Nakath, Rachuy, et al.,
2016; Nakath, Clemens, and Schill, 2018). In Nakath, Clemens, and Rachuy, 2020 an active
graph based simultaneous localization and mapping (SLAM) in the vicinity of an asteroid
was proposed. This approach utilizes the navigation sensors of the spacecraft, an inertial
measurement unit (IMU), a star tracker, and LiDAR to estimate the state of the spacecraft
relative to the map estimate of the asteroid. Reducing the uncertainty about the state, e.g.,
the orbit trajectory, and the map, e.g., the asteroid’s surface, are conflicting goals. The active
perception approach controls the information and localization gain, balancing the conflicting
goals, by choosing appropriate orbit trajectories.

4.4 Contribution

In Reineking et al., 2010 we demonstrated that the sensorimotor principle can be applied to
different levels of granularity for both, perception and localization. It offers a psychologically
and neurobiologically plausible approach for recognition and navigation tasks. By utilizing
the information gain principle, the system is able to solve these tasks efficiently. We showed,
furthermore, that the hierarchical representation which is necessary for efficient inference can
be learned in an unsupervised fashion (Gadzicki, 2009).

Active perception and information gain principles can be applied to navigational tasks in
Space exploration (Probst et al., 2015). The approaches suggested here are novel to my
best knowledge and show that methods inspired by biological perception can be applied to
complex systems like spacecrafts. The concept of using sensory information together with
motor actions for representation and information maximization for inference can be virtually
applied to any agent operating in any environment.
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CHAPTER D

Conclusion and Outlook

This dissertation presents three different perspectives on biologically inspired pattern recog-
nition. One perspective is represented by computational models of human visual system
which implements known properties of neurons from the visual cortex. Another perspective
is given by artificial neural networks inspired by the interconnected nature of the cells in
the brain, which perform complex operations utilizing simple units. Sensorimotor processing
represents the last view combining bottom-up feature extraction with top-down information
gain driven processing.

Models of the human visual system are a very direct realization of biologically inspired
vision. We have shown that our model was able to predict subjective assessment of streak
distortions in printings over the full impairment scale. For streak distortions at the threshold
of perception a model predicting a broad range of scales is of limited use. Here a possible
direction of development is the modification of the HVS model to predict detection of distor-
tions. The prediction of threshold perception can be modeled well with such a model, but
requires respective data from human observers for tuning of the model.

We have proposed a neuro-biologically plausible method for estimation of frequency dis-
tribution and auto- and cross-correlation functions. This has been done by utilizing the gain
control function known from neurons in the visual pathway. As a next step the neural fre-
quency distributions could be used for vision models utilizing statistical information, e.g.,
models of peripheral vision. They would benefit with regard to plausibility by utilizing our
proposed statistical functions.

Artificial neural network are inspired by parallel distributed processing and connectionist
ideas of data processing with a population of simple units, inspired by the brain and its
construction from neurons. While convolutional neural networks are inspired by human visual
system, they can serve as models for other modalities as well. We have proposed convolutional
neural networks for activity recognition. Our focus was on multimodal CNNs with different
fusion methods, showing that early fusion performed better than the classical late fusion.
Future developments can be the addition of more modalities which might be particularly
interesting for early fusion, leading to an increased performance for the recognition task. A
challenge here is alignment and synchronization of modalities, especially those with different
dimensionality, e.g., video and skeleton data. Another direction could be spatio-temporal
interest operators, providing better information about the temporal changes of input data.
Furthermore developments from the image domain could be adapted for HAR, e.g., attention
networks (Xu et al., 2015) or transformers (Dosovitskiy et al., 2020), and investigated with
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regard to multimodal extensions.

Our system for human activity recognition has been integrated in a human to robot pipeline
with the long term goal of transferring knowledge from human subjects performing everyday
activities to robots. In this first stage the HAR module served as a recognizer for automated
labeling. As a next step this approach can become part of generative models of human
activities, abstracting from individual human demonstrations and generalizing activities of
different levels of granularity.

Finally sensorimotor representations are suitable for computational models of perception
and localization. While HVS models and ANN are bottom-up driven approaches, our senso-
rimotor approaches include a top-down cognitive component. Inference utilizing information
gain has been shown to work efficiently for perception tasks using visual information and lo-
calization in spatial environments. Based on these principles it is possible to design navigation
and localization methods for spacecrafts.
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Publications

6.1 Peer-reviewed publications

The following list contains the peer-reviewed papers.

Gadzicki, K.: Hierarchical Clustering of Sensorimotor Features. In KI 2009:
Advances in Artificial Intelligence Vol. 5803 Lecture Notes in Artificial Intelligence
(2009).

My share: 100%

This paper is based on my Diploma thesis.

Reineking, T. and Wolter, J. and Gadzicki, K. and Zetzsche, C.: Bio-inspired Archi-
tecture for Active Sensorimotor Localization. In Spatial Cognition VII (2010),
pp-163-178.

My share: 20%

I have implemented and integrated the hierarchical clustering, and contributed to the
corresponding sections of the manuscript.

Gadzicki, K. and Zetzsche, C.: Prediction of the Perceived Quality of Streak Dis-
tortions in Offset-Printing with a Psychophysically Motivated Multi-channel
Model. In Tagungsband 18. Workshop Farbbildverarbeitung 2012, Darmstadt (2012).
My share: 90%

I have implemented and evaluated the model, and written most of the manuscript.

Gadzicki, K. and Zetzsche, C.: Prediction of the perceived quality of streak dis-
tortions in offset-printing with a psychophysically motivated multi-channel
model. In Journal of Modern Optics, 60.14 (2013), pp. 1167-1175.

My share: 90%

I have implemented and evaluated the model, and written most the manuscript.

Zetzsche, C. and Gadzicki, K. and Kluth, T.: Statistical Invariants of Spatial
Form: From Local AND to Numerosity. In Proceedings of the Second Interdisci-
plinary Workshop The Shape of Things (2013), pp. 163-172.

My share: 30%

My part was the implementation and evaluation of the frequency distributions and
statistical functions with neurons. I have contributed to these parts of the paper.
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e Probst, A., Gonzalez Peytavi, G., Nakath, D., Schattel, A., Rachuy, C., Lange, P.,
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I was the project manager and coordinator of this project. I have guided the general
direction of the development, contributing to concepts and discussions on practically all
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description of the project.

Gadzicki, K. and Khamsehashari, R. and Zetzsche, C.: Multimodal Convolutional
Neural Networks for Human Activity Recognition. In TROS 2018: Workshop on
Latest Advances in Big Activity Data Sources for Robotics & New Challenges, Madrid
(2018).

My share: 85%

I have designed, implemented and evaluated the models. I have written most of the
manuscript.
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Convolutional Networks for Skeleton-Based Human Action Recognition. In
ICVS 2019: Computer Vision Systems (2019), pp. 376-385.

My share: 20%

I have contributed to the concept of the model. I have contributed to the manuscript.

Gadzicki, K. and Khamsehashari, R. and Zetzsche, C.: Early vs Late Fusion in
Multimodal Convolutional Neural Networks. In 2020 IEEE 23rd International
Conference on Information Fusion (FUSION), virtual event (2020).
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6.2 Extended Abstracts
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ral Computation of Statistical Image Properties in Peripheral Vision. In
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Abstract The evaluation of printing machines poses the problem of how dis-
tortions like streaks caused by the machine can be detected and assessed auto-
matically. Although luminance variations in prints can be measured quite pre-
cisely, the measured functions bear little relevance for the lightness of streaks
and other distortions of prints as perceived by human observers. First, the
measurements sometimes indicate changes of luminance in regions which are
perceived as homogeneous by humans. Second, the measured strength of a
distortion correlates often weakly with its perceived strength, which is influ-
enced by a variety of factors, like the shape of a streak’s luminance profile and
the distribution of luminance variations in its spatial surround. We have used
a model of human perception, based on fundamental neurophysiological and
psychophysical properties of the visual system, in order to predict the strength
of streak distortions as perceived by human observers from a measured lumi-
nance signal. For the evaluation of the model, tests with naive and expert
observers have been conducted. They showed that the model has a good cor-
relation (> 0.8) to the assessments of human observers and is therefore suited
for use in an automatic evaluation system.
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1 Introduction

Modern offset printing machines are able to produce prints at high speed and quality. Nev-
ertheless certain distortions, like streaks, are generated almost inevitably due to vibrations
of the machine or an inadequate configuration. Streak distortions run orthogonally to the
printing direction and result from slight shifts of the ink. All variations in the printing
pattern can be captured metrologically very precisely, resulting in a signal in which the
slightest changes of the density of a print are recorded. Unfortunately, the perception of
humans deviates in several respects from the recorded signal. First, areas containing only
small random fluctuations are perceived as homogeneous by humans. It is clear that such
fluctuations, though measurable, have little practical relevance for the judgment of the
quality of the printing process. Second, the perceived lightness of a streak differs substan-
tially from its recorded intensity profile, both in dependence of the shape of the profile
(as opposed to its mere height or contrast), and in dependence of the spatial surround of
the streak (for example neighboring streaks or paper borders).

The evaluation of a printing machine thus requires a human expert in order to assess
the prints with regard to the severity of streak distortions. Though procedures exist for
metrological evaluation, the current methods either locate only severe distortions which
are not arguable, while ignoring disputable distortions below their threshold which can still
be visible to humans. Or, with the threshold lowered, they report relevant deviations in
areas perceived as homogeneous by humans. In addition, they cannot take the surround of
a streak into account for the evaluation of its strength. An automatic system for evaluation
according to human perception essentially requires the incorporation of a model of the
human visual system.

Several such models based on the properties of the human visual system have been used
to assess image quality in the past [1][2][3][4]. These models commonly incorporate major
properties like luminance invariance, sensitivity to frequency and orientations, and mask-
ing effects. Early models used a point-wise non-linearity or explicit gain modifications by
a masking signal to account for masking effects while later vision models used divisive
inhibition pooling acting over both spatial positions and frequency-selective channels [5].
The model suggested here takes these developments into account.

2 System and Model

The model is intended as part of a future system for the automatic evaluation of prints
produced by SID!. It is designed to work with scanned images of printings, but can also be
adapted to other input sources (e.g. densitometers). Hardware and software for scanning
and preprocessing of the scans in the current study was provided by SID. The scans were
generated with 5000 dpi which provides sufficient resolution for discrimination of closely
neighboring streaks.

2.1 Model

On the top level, the model processes two inputs in parallel. As shown in Figure 1,
signal+background and background alone are processed in the same manner by a system
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explained in detail below. Streaks and other distortions are seen as the signal, while the
background contributes to masking effects on this signal, e.g. by high-contrast luminance
eges at the print borders. The local vector norm between the multi-channel outputs of
the two pathways determines the final model output and thus the perceived strength of
local distortion.

Signal +
Background System
N
0
r
m
Background System

Figure 1: Model overview. The system (shown in detail in Figure 2) generates a multi-
channel representation of both signal and signal+background. The distance
between the two representations is assumed to be the perceived strength of the
signal, and is computed by the difference norm shown at the right.

The system used for both pathways in Figure 1 is shown in detail in Figure 2. Its first
stage is a luminance adaptivity stage, where local contrast is computed by a nonlinear
multi-scale decomposition. In the next stage frequency- and orientation-selective linear
band-pass filters are applied, leading to a further decomposition of each scale into its
orientations. Finally, the filter outputs are normalized by local gain control mechanisms
which pool over space, scales and orientations. These stages are now described in detail.

2.1.1 Luminance Invariance

The first step in the model is to transform the absolute luminance intensities. According
to Weber’s Law, the crucial variable for discrimination of luminance variations is contrast
and not the absolute difference of luminance. The model uses the Ratio of Gaussian
(ROG) operator [1] in order to calculate the contrast values. As the name suggests, the
ROG is divisive operation of two low-pass inputs with different cut-off frequencies resulting
in a non-linear band-pass output. Figure 3 illustrates the response of the operator.

For a computationally efficient implementation a pyramid scheme, similar to that in the
Laplacian pyramid [6], is used to build the nonlinear representation of contrast, decom-
posed into several spatial scales.

2.1.2 Frequency- and Orientation Selective Filters

The majority of cells in early visual cortex are so-called Simple and Complex Cells which
are responsive to patterns with a specific orientation and size. Orientation selectivity
was the major finding of Hubel and Wiesel [7][8][9], and spatial-frequency selectivity was
measured later in cats [10] and primates [11].

Mathematically the receptive field of such cells can be best described by Gabor functions
[12], which offer the optimal resolution and selectivity in order to represent the response of
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Figure 2: Overview over the system (as used for both pathways in Figure 1). From the
input (1), the contrast is computed by non-linear ROG filters (2) and passed
to a set of frequency- and orientation-selective linear filters (3). The outputs
are then passed through gain control mechanisms (4). One of these is shown
in detail on the right hand side. Hence each channel is normalized by spatial
pooling over the other channels.
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Figure 3: Response of a Ratio of Gaussian operator to luminance step edges. (a) input.
(b) the ROG output represents luminance contrast. (c) linear DOG response
shown for comparison.
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V1 cells [13][14]. Gabor functions can be separated into even- and odd-symmetric parts,
which respond best to saddles or edges respectively.

Though Gabor filters fit the psychophysical data well, they can be problematic in practice
due to the DC component (zero frequency) of the even-symmetric part which does not
drop to zero for filters with typical bandwidth. A Log-Gabor function [15], essentially a
Gabor on a logarithmic scale, can be used to avoid this problem.
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2.1.3 Masking

In visual perception the term masking usually refers to the reduced detectability of a
stimulus in the presence of another stimulus. Such contrast masking has been modeled
by a non-linear transducer function in early models [16]. Psychophysical experiments
investigating the contrast response function of neurons from cats and monkeys [17] intro-
duced the Naka-Rushton function, a hyperbolic ratio, as the best fitting description for
neural response to contrast. Further investigations of the response properties of neurons
revealed a pooling effect [18][19][20]. Masking effects can thus be explained by a suppres-
sive signal derived by pooling over neurons. This mechanism is commonly referred to as
Cortical Gain Control. It is modeled by a divisive pooling over space and channels and
was included into recent visual system models, e.g. by Watson [5].

3 Methods

For the purpose of data acquisition, several experiments have been run. The first exper-
iment employed naive observers with an on-screen display of distorted patterns in order
to establish a baseline for the model in a noise-free environment. The only source of noise
in this setup was effectively perceptual noise of the observers.

The second set of experiments were evaluations of real printings conducted by experts
from the printing industry. In this setup several sources contributed to the noise of the
system, namely the printing process itself, the scanner system, and perceptual noise of
the observers.

3.1 Scale

Participants rated distortions on a qualitative grade scale similar to the EBU scale used
in television picture quality assessment [21]. The grades used here ranged from 0 to 6 in
0.5 steps with 6 meaning a severe distortion and 1 a barely visible one. 0 was reserved for
undetected distortions, thus it was not assigned by the participants directly but rather
during the evaluation in case that participants did not see particular distortions in trials.
The scale used here is reversed in comparison to the EBU scale and is actually the one
used historically by the printing industry.

3.2 Experiments with Naive Observers

The experiments with naive observers used patterns presented on-screen only, in order
to establish full control of the presentation and eliminate any additional sources of noise
which are inevitably introduced in the full process of printing and scanning of patterns.
The patterns were presented on analog screens with analog input which allowed for a
luminance resolution equivalent to roughly 10 bits.

The set of patterns consisted of 30 images with a total of 75 streak distortions. For
each participant three session were conducted. The whole set was presented during each
session. The participants marked the position of a distortion by clicking with the mouse.
The level of distortion (grade) and the classification (edge or saddle) were entered with
the keyboard.
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The distortions for the whole set were generated in a random fashion. This randomized
set was used for all participants and sessions. The generation parameters included the
number, position and type (Gauss or sharp edge) of distortions, width of the distortion,
width of the edge, and contrast.

The participants were students with no prior involvement with the printing industry
except for being exposed to printed products like books, magazines etc. in their daily
life. They were not trained to perform this specific evaluation of printings task that was
required in this experiment.

In total 21 participants participated in the experiment. Six of them were excluded from
the evaluation because they either did not finish all sessions or had a significantly higher
deviation of responses from the average.

3.3 Experiments with Experts from the Printing Industry

This experiment involved evaluation of real printings and was done by experts from various
companies (Heidelberger Druckmaschinen, Koenig & Bauer, Manroland) from the printing
industry.

In total, 52 printings were specially produced for the purpose of this experiment. Among
them, 36 contained artificially generated distortions while the remaining 16 printings
contained realistic distortions produced by an imprecisely configured printing machine.
In the case of the artificial patterns, contrast, position, width of the distortion, and width
of edges were varied.

The evaluation process was conducted under standardized conditions according to [22].
Each participant completed three sessions. The positions for the realistic-distortion pat-
terns were fixed by the experts before the actual assessment. The positions of artificial
distortions were known beforehand, but in the case of additional distortions as a result of
the printing process, the positions were mapped manually by experts as well. The level of
distortion at a specific position was recorded by an assistant. Details on the experiment
can be found in [23].

In contrast to former experiments with on-screen presentation, several sources of noise
influenced the results of this experimental setup. The printing process itself introduced
considerable noise so that in the case of artificial patterns, the signal was noisy, even
though the parameters used for generation were known. With regard to the realistic-
distortion patterns, the actual signal of the pattern was not known at all.

3.4 Estimation of Model Parameters

For evaluation, model parameters were fitted to the data. The first approach was to use
a simplex search [24] which turned out to be error-prone. This approach was not able
to cope with the non-linear nature of this optimization problem, and produced unstable
results. Finally a global search using particle swarm optimization [25][26][27] was used to
fit the model parameters.

3.5 Evaluation

A local maximum search was used for comparison between model output and assessments.
For the on-screen experiments this was due to the fact that the non-expert participants
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were often sloppy with regard to clicking at the exact location of the distortion, so that
the recorded positions were often several pixel off. In the case of the expert experiments
with printings the positions were given in millimeters and were very precise, but the scans
of the printings mapped roughly five pixels to a millimeter. Due to this the position in
millimeters only indicated an area in the model output.

In order to assess participants’ performance, the standard deviation of the participants’ re-
sponses was calculated. The deviations of the responses indicate how stable the observers’
assessments were.

The performance of the model was measured by its correlation with the participants’
average assessment for each distortion.

4 Results

4.1 Stability of Assessments

Table 1 shows the standard deviations of the responses of the naive and expert observers.
The deviations were calculated intra-individually, e.g. average for each participant, and
inter-individually, thus average for each distortion. The intra-individually averaged re-
sponses provide information on the consistency of an observer with regard to his or her
own responses, i.e. the extent to what the participant can reproduce his or her own
responses over subsequent sessions. On the other hand the inter-individually average
responses show how the participants agree with each others assessments.

Table 1: Deviations of observers’ assessments

Naive | Expert
Intra-individually averaged | 0.382 | 0.309
Inter-individually 0.707 | 0.454

One can see that both naive and expert observers were able to reproduce their own
responses in a quite reliable way. Though the experts were slightly more consistent, the
gap to the naive observers was not large and only differed by 0.073.

With regard to the deviation of responses over all participants for each distortion, the
experts were much more consistent as a group. The experts were actually trained to assess
distortions on an absolute scale due to their daily work which requires this particular skill.
The naive observers on the other hand — even though consistent in their own opinion —
have only received a brief explanation of the scale with examples for particular absolute
grades. But with no further feedback on their own assessment, it is not surprising that
the results of this group varied to a much larger degree.

4.2 Correlation between Model and Assessments

The correlation is shown for inter-individually averaged data where the average assessment
for each distortion was mapped to the model output. Figure 4a shows the results for naive
observers while figure 4b represents the expert observers.

Interestingly the naive observers achieved a higher correlation than the expert observers.
With regard to the deviations of assessments (Table 1) this result is somewhat surprising.
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Figure 4: Correlation between model and inter-individually averaged data for (a) naive
observers and (b) experts.

Though the processing pipeline for the experiment with printings introduced additional
noise in comparison to the on-screen experiments, it is not clear whether this circumstance
already accounts for the better results with naive observers.

A further difference between the two experiments is the respective set of test patterns.
While in the on-screen experiments the strength of the streaks was approximately uni-
formly distributed over the grade scale, the expert experiment used a high percentage of
realistic prints, which contain many barely visible streaks. Ratings performed close to the
threshold of perception can be a problem, as shown below.

4.3 Patterns at Threshold of Perception

Printings are generally noisy with regard to the luminance signal. Therefore many weak
streaks are difficult to detect even for trained observers. This is illustrated by the fact that
naive observers who have performed the assessment task with realistic printings found
approximately three streaks per print whereas the experts found up to 25. However,
almost all additional streaks found by the expert group were rated with 1 (barely visible).

4.3.1 Illustration of the Problem

Figure 5a illustrates the distortions of the grades which can occur at the boundaries of
the grade scale. First, in the lower part of the scale, near the threshold of perception, a
range of different signal levels, from weakly visible to almost invisible signals, is mapped
to grade 1. (Since the locations of the streaks are marked, they will typically receive
a grade 1, even if critical testing without markings would presumably reveal that some
participants are not able to see them.) Ideally there should be a proportionality between
signal level and grade also in this regime, but since the grade 1 is used for even the least
visible signal, the mapping runs into a plateau.

A similar problem can occur at the upper boundary of the grade scale as well, exaggerated
by the fact that participants tend to avoid to use the worst grade, irrespective of how
strong the streaks are. Hence the mapping of signal to grade scale can have a less steep
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slope and may reach a plateau also in this range

Figure 5: Visualization of distortions of the grade scale at the lower and upper boundary
of the scale.
(a) hypothetical effective signal mapped to the grade scale (b) grades mapped
to the ideal model. (c) apparent deviations of the model as caused by the grade
scale distortion effects.

Figure 5b illustrates the problem from the point of view of an ideal model. For this the
axes from figure 5a have to be switched. From the view of the model the minimum grade
is assigned to range of values of the model output. At the upper end of the model outputs
the same effect is visible, i.e. grades at the upper end will be mapped to a wider range of
model outputs.

Figure 5¢ shows the expected effects with regard to the resulting apparent deviations of
the ideal model from the participants’ responses. In the interior range of the grade scale
the model output corresponds well to the reponses of the participants. The deviations
here reflect the “true” deviations of the model, while at the boundaries the apparent
deviation of the model is artificially increased.

4.3.2 Correlation between Assessments and Model with Varying Percentage of
Near-threshold Distortions

The correlations between model and participants’ assessments for the whole set, includ-
ing the afore-mentioned distortions near the threshold of perception, have already been
presented in figure 4b. We now analyze the influence of those near-threshold responses
on the overall performance.

Subsets of the data with a varying percentage of near-threshold responses have been
investigated with regard to their effect on the correlation of the model predictions. The
criterion for assigning a particular streak to the near-threshold group was the percentage
of minimum grades given to that streak. As the minimum grade was effectively given to
streaks which were barely visible or not seen at all by some observers, this criterion offers
a flexible way to determine the subset of near-threshold streaks. The hardest version of
the criterion is to mark a streak as near-threshold if at least one minimum grade has been
assigned to it by one of the participants. In subsequent plots assessments of distortions
are plotted in red if they contain a minimum grade response.

Figure 6a shows the subset consisting of inter-individually averaged assessments, which
received at least one minimum grade response. As one can see, the apparent variance
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of the model output is quite high, which is in correspondence to the aforementioned
hypothesis taht in this regime different signal levels are mapped to the minimum grade.
The omission of this subset, i.e. of streaks which have received at least one minimum
grade from the evaluation, leads to an increase in the correlation for the averaged data
from 0.81 to 0.88, as shown in Figure 6b. Note that although the overall dynamic range
of the data is reduced, the correlation increases. This corroborates our hypothesis that
the excluded subset is not well behaved.

Model
Model

Corr: 0.88 i

3 4 5 6 0 1 2 3 4 5 6
Scores Scores

(a) (b)

Figure 6: Correlation between model and inter-individually averaged assessments for rat-
ings not containing the minimum grade (b) and for ratings containing at least
one minimum grade response (a).

5 Conclusion

We have presented a model for the automatic prediction of the perceived strength of
streak distortions in offset printing. The model is based on recent neurophysiological and
psychophysical results. It can describe shape effects due to the shape of the luminance
function of a streak and masking effects as caused by the configuration in its spatial
surround.

In experiments with naive and expert observers we have collected assessments on a large
number of streak patterns. We have then shown that the model shows a good correlation
in predicting the perceived strength of these distortions.

The prediction of distortions close to the perceptual threshold proved to be problematic,
resulting in a big deviation of model responses for barely visible distortions. The removal
of distortions which were rated with the minimum grade increased the correlation of the
model predictions, although the dynamic range of the data has been reduced by this
removal.

This model of the human visual system seems thus to be suitable for the automatic
evaluation of printings.
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The evaluation of printing machines poses the problem of how distortions like streaks caused by the machine
can be detected and assessed automatically. Although luminance variations in prints can be measured quite
precisely, the measured functions bear little relevance for the lightness of streaks and other distortions of prints
as perceived by human observers. First, the measurements sometimes indicate changes of luminance in regions
which are perceived as homogeneous by humans. Second, the measured strength of a distortion correlates often
weakly with its perceived strength, which is influenced by a variety of factors, like the shape of a streak’s
luminance profile and the distribution of luminance variations in its spatial surround. We have used a model
of human perception, based on fundamental neurophysiological and psychophysical properties of the visual
system, in order to predict the perceptual strength of streaks (i.e. the distortion as perceived by a human
observer) from the measured physical luminance signal. For the evaluation of the model, tests with naive and
expert observers have been conducted. The results show that the model yields a good correlation (> 0.8) to
the assessments of human observers and is thus well suited for use in an automatic evaluation system.

Keywords: image quality; offset printing; human visual system; quality control

1. Introduction

Modern offset printing machines can rapidly produce prints at high quality. Nevertheless certain
distortions, like streaks, are generated almost inevitably due to vibrations of the machine or an
inadequate configuration. Streak distortions run orthogonally to the printing direction and result
from slight shifts of the ink. All variations in the printing pattern can be captured metrologically
very precisely, resulting in a signal in which the slightest changes of the density of a print are
recorded. Unfortunately, the perception of humans deviates in several respects from the recorded
signal. First, areas containing only small random fluctuations are perceived as homogeneous by
humans. It is clear that such fluctuations, though measurable, have little practical relevance for
the judgement of the quality of the printing process. Second, the perceived lightness of a streak
differs substantially from its recorded intensity profile, both in dependence of the shape of the
profile (as opposed to its mere height or contrast), and in dependence of the spatial surround of
the streak (for example neighbouring streaks or paper borders).

The evaluation of a printing machine thus requires a human expert in order to assess the prints
with regard to the severity of streak distortions. Since this is a tedious process and bears the
risk of a subjective bias of the expert there have been attempts to create a standardized and
automated evaluation method. The method currently used in the German printing industry uses
the difference in CIELAB colour AE* every 2.5mm over the length of a print for the calculation
of the distortion strength and applies a threshold to classify them as annoying or not [1, 2]. In an
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ongoing discussion and evaluation several print-related research institutions in Germany (FGD,
SID, FOGRA) have analysed the merits and drawbacks of this standardized procedure. Various
modifications of the spatial difference in CIELAB colours have been tested, for example by SID.
These brought some improvements, but showed to be not accurate enough in their prediction of
the perception of human experts.

The current methods either locate only severe distortions which are not arguable, while ignor-
ing disputable distortions below their threshold which can still be visible to humans. Or, with
the threshold lowered, they report relevant deviations in areas perceived as homogeneous by
humans. In addition, they cannot take the surround of a streak into account for the evaluation
of its strength. It has been concluded by the research institutions that an automatic system for
evaluation of perceived streak distortions essentially requires the incorporation of a model of
the human visual system (HVS). This prompted the present investigation and the associated
development of the model suggested here.

Several image quality models based on the properties of the human visual system have been
developed in the past [3-10]. These models commonly incorporate major properties like lumi-
nance invariance, sensitivity to frequency and orientations, and masking effects. Early models
used a point-wise non-linearity or explicit gain modifications by a masking signal to account for
masking effects. More recent models of the visual system used divisive inhibition pooling acting
over both spatial positions and frequency-selective channels [11]. The model suggested here takes
these developments into account.

In addition to the aforementioned systems, there exists a large number of approaches which
are not solely based on the HVS. These approaches include feature based scales, e.g. [12, 13],
multi-dimensional impairment scales, e.g. [14], a spatial extension to CIELAB [15], structural
similarity index [16, 17], image information fidelity [18] or most apparent distortion [19]. Such
approaches can be of special advantage if one model should be applied to heterogeneous stimulus
domains. See [20] for a recent comparison of a number of different approaches. Beside the problem
of modelling human perception, there are also cognitive issues which can influence the human
judgements [21]. Such issues can be hoped to be not as critical in the specific context of the
present investigation, where trained specialists operate in a quite restricted domain.

2. System and Model

The model is intended as part of a future system for the automatic evaluation of prints produced
by SID (Séchsisches Institut fiir die Druckindustrie). It is designed to work with scanned images
of printings, but can also be adapted to other input sources (e.g. densitometers).

2.1. Input and Devices

The test patterns used for the evaluation of a print machine are homogeneous prints in a specific
base colour, usually cyan, which are printed with a accurately defined machine configuration.
Figure 1 shows an example of a print with streak distortions.

Hardware and software for scanning and preprocessing of the scans in the current study was
provided by SID. The scanner is a RGB scanner by Colortrac which has been calibrated in a
similar way to ICC. The reference image consisted of cyan patches of varying density since this
is the only relevant colour for the purpose of evaluation. The CIELAB values of the patches were
measured with a colorimeter and in a second step a quadratic function was fitted to adjust the
transformed scanner’s elements’ RGB values to match the measured CIELAB values.

The prints were scanned twice in opposite direction in order to counter systematic bias from
sampling in one direction. The prints contain markers which allow to match the images after
the scan process. The matching was not done with sub-pixel accuracy since this level of accu-
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Figure 1. Example of streak distortions. The image shows an extract from a scan, the contrast has been increased dramat-
ically. The printing direction runs horizontally, the streak distortions are thus vertical.

Signal +
Background System
N
o
r
m
Background > System

Figure 2. Model overview. The system (shown in detail in Figure 3) generates a multi-channel representation of both signal
and signal+background. The distance between the two representations is assumed to be the perceived strength of the signal,
and is computed by the difference norm shown at the right.

racy is not required for detection of streaks which are much more coarse. The images are then
preprocessed by de-screening and correction of row and column shading, averaging over several
pixels. A side effect of the preprocessing is that two-dimensional signal variations are reduced in
adaption to the one-dimensional nature of the streak patterns.

2.2. Model

On the top level, the model processes two inputs in parallel. As shown in Figure 2, signal +
background and background alone are processed in the same manner by a system explained
in detail below. Streaks and other distortions are seen as the signal, while the background
contributes to masking effects on this signal, e.g. by high-contrast luminance edges at the print
borders. A local vector norm between the multi-channel outputs of the two pathways determines
the final model output and thus the perceived strength of a local distortion. The system used
for both pathways in Figure 2 is shown in detail in Figure 3. Its first stage is a luminance
adaptivity stage, where a multi-scale presentation of local contrast is computed by a nonlinear
filter decomposition. In the next stage frequency- and orientation-selective linear band-pass filters
are applied, leading to a further decomposition of each scale into its orientations. Finally, the
filter outputs are normalized by local gain control mechanisms which pool over space, scales and
orientations.

For the evaluation of the model, those parameters of the model which are expected to be
specifically related to the task were fitted with Particle Swarm optimization [22]. Other parame-
ters, like the filter bandwidths for the ROG and Log-Gabor filters, and the orientation selectivity
were set to the typical values known from psychophysical and neurobiological research (see be-
low). The contrast sensitivity function was fitted indirectly by the Log-Gabor filter amplitudes
for different scales. A further parameter that has been fitted is the exponent of the vector norm.

The stages of the model are now described in detail.

2.2.1. Luminance Invariance

The first step in the model is to transform the absolute luminance intensities. According to
Weber’s Law, the crucial variable for discrimination of luminance variations is contrast and
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1 2 3 4 Gain Control

Figure 3. Overview over the system (as used for both pathways in Figure 2). From the input (1), the contrast is computed
by non-linear ROG filters (2) and passed to a set of frequency- and orientation-selective linear filters (3). The outputs are
then passed through gain control mechanisms (4). One of these is shown in detail on the right hand side. Hence each channel
is normalized by spatial pooling over the other channels.
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Figure 4. Response of a Ratio of Gaussian operator to luminance step edges. (a) input. (b) the ROG output represents
luminance contrast. (c) linear DOG response shown for comparison.

not the absolute difference of luminance. Contrast is defined as the ratio between luminance and
(local) background (average luminance of the surrounding). The model is intended for luminance
as input but it can also be used with the L* channel from a signal in CIELAB colour space so
that the lightness values correlate already better with human perception. The current data set
provides such L* values. Although Weber’s Law is to a certain degree incorporated in the L*
scale, our generalized model incorporates a local contrast adaptation stage which is able to model
local effects that cannot be captured by the global normalization of the CIELAB scale.

The model uses the Ratio of Gaussian (ROG) operator [3] in order to calculate the contrast
values. As the name suggests, the ROG is divisive operation of two low-pass inputs with different
cut-off frequencies resulting in a non-linear band-pass output (1).

2 2
l(z,y) * ﬁg exp <— (%ﬁy—))

l(x,y)*ﬁexp <_ (%ﬁ))) . (1)

i1

gi+1(z,y) = (

In the model the sigma ratio is 0;+1 = 20y, starting with o9 = 8 pixel. The constant c is set to 2.0.
Figure 4 illustrates the response of the operator. For a computationally efficient implementation
a pyramid scheme, similar to that in the Laplacian pyramid [23], is used to build the nonlinear
representation of contrast, decomposed into five spatial scales.
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2.2.2.  Frequency- and Orientation Selective Filters

The majority of cells in early visual cortex are so-called Simple and Complex Cells which are
responsive to patterns with a specific orientation and size. Orientation selectivity was the major
finding of Hubel and Wiesel [24-26], and spatial-frequency selectivity was measured later in cats
[27] and primates [28]. Mathematically the receptive field of such cells can be best described by
Gabor functions [29], which offer the optimal resolution and selectivity in order to represent the
response of V1 cells [30, 31]. The 2D kernel (2) of a Gabor filter consists of a complex sinusoid
(3) weighted by a Gaussian function (4):

hz,y) = g(z,y)s(z,y) (2)
with
s(z,y) = exp(—j2mupr) (3)
1 .132 2

Here z,y are the spatial coordinates, o, o, the deviations of the Gaussian function and ug the
wave length of the sinusoid. The orientation of the filter kernel can be achieved by a rotation of
the coordinate system.

For a representation in the frequency domain, (2) can be transformed, resulting in the filter
function

(u — up)? v? ) (5)

H(u,v) = exp ( 0 o)’ + W(ZUU)Q
where u, v are the frequencies corresponding to x,y, ug is the centre frequency of the filter and
Oy = ﬁ, Oy = ﬁ are the bandwidths in 2- and y-direction. The centre frequency ug places
the centre of the Gaussian on a specific frequency. oy, 0, define the cut-off frequency where
the function value declines to 0.465, effectively determining the bandwidth in frequency and
orientation.

Though Gabor filters fit the psychophysical data well, they can be problematic in practice
due to the DC component (zero frequency) of the even-symmetric part which does not drop
to zero for filters with typical bandwidth. A Log-Gabor function [32], essentially a Gabor on
a logarithmic scale, can be used to avoid this problem. The model uses a Log-Gabor in polar
coordinates (6)

. (log%)Z (¢_¢)2 (¢_¢ _71_)2
Hlog(p, ¢) = JkeXp (-M) [— exp <2U§)O — (—1k)exp # (6)

with p being the radial frequency and ¢ the angle. The preferred frequency and orientation of
this filter function is given by pg and ¢¢. Bandwidth and orientation selectivity are determined
by o, and o4. The even symmetric function is real valued (k = 0) and the odd symmetric
filter function imaginary (k = 1). The amplitudes of the filters used for the five scales returned
by the optimization are 4314.25, 5420.88, 3915.05, 3305.01 and 3115.31. For each level of the
pyramid structure, the preferred frequency pg is matched to corresponding cut-off frequency
0i+1 of the denominator of the ROG operation. The bandwidths used in the model are not
subject to optimization but are fixed and follow the values known from neurobiology: 1 octave
for frequencies [33] and 30° for orientations [34].
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The model uses an orientation-selective filter decomposition since it should not be restricted
to the processing of 1-D signals but should allow the evaluation of all types of distortions in
two-dimensional prints. It should be noted that even the streak patterns considered here are
not strictly one-dimensional signals. In some cases the width and the profile of a streak shows
small but visible variations along the length of the streak. Such streaks are easier to detect and
are perceived as stronger than the corresponding perfectly straight streaks. The deviations from
straightness can in principle be captured by a model with multiple orientation channels since
they cause additional activity in neighboring orientation channels. However, our investigations
revealed that this effect can not be thoroughly evaluated with the current data set. In the
preprocessing applied with the scanning, the averaging in streak direction smoothed out the two-
dimensional variations such that only insufficient energy remained in neighbouring orientation
channels. With the current data, the model thus acts as an essentially one-dimensional model,
but with other distortions and/or recording methods it acts as a 2-D model.

2.2.3. Masking

In visual perception the term masking usually refers to the reduced detectability of a stimulus
in the presence of another stimulus. Such contrast masking has been modelled by a non-linear
transducer function in early models [35]. Psychophysical experiments investigating the contrast
response function of neurons from cats and monkeys [36] introduced the Naka—Rushton func-
tion, a hyperbolic ratio, as the best fitting description for neural response to contrast. Further
investigations of the response properties of neurons revealed a pooling effect [37-39]. Masking
effects can thus be explained by a suppressive signal derived by pooling over neurons, a mech-
anism commonly referred to as Cortical Gain Control. It is modelled by a divisive pooling over
space and channels (7) and was included into recent visual system models, e.g. [11]. In the model
pooling is done over neighbouring scales and over all orientations of these scales. Pooling over
space is performed by a convolution with a low-pass filter kernel.

_ Ts,o(xa y)p
TS,O(:'L‘?y) = s+1 6 (7)

4+ Y > (rsp*kso)(x,y)?

s5=s—10=1

The responses r are the outputs of linear filters, indexed by s for scale and o for orientation. As
for the exponents used by the model, p = 2.4622 was returned by the optimization and ¢ = 2
was fixed. The constant ¢ defines the point where saturation begins which was set to 0.5 in the
model. The convolution operation is denoted by x with k(z,y) being the kernel. The model uses
a Gaussian low pass kernel with 0.0625 as cut-off frequency (Fourier domain based convolution).

2.2.4. Vector Norm

The final result is the local vector norm (Minkowski distance) between the two multi-channel
pathways:

r - 1/p
d= (Z |7"signa1+background - TbaCkground|p) (8)

The optimization returned p = 2.5055 as the best fitting exponent.

3. Methods

For the purpose of data acquisition, several experiments have been run. The first experiment
employed naive observers with an on-screen display of distorted patterns in order to establish a
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baseline for the model in a noise-free environment. The only source of noise in this setup was
effectively perceptual noise of the observers. The second set of experiments were evaluations
of real printings conducted by experts from the printing industry. In this setup several sources
contributed to the noise of the system, namely the printing process itself, the scanner system,
and perceptual noise of the observers.

3.1. Scale

Participants rated distortions on a qualitative grade scale similar to the EBU scale used in
television picture quality assessment [40]. The grades used here ranged from 0 to 6 in 0.5 steps
with 6 meaning a severe distortion and 1 a barely visible one. 0 was reserved for undetected
distortions, thus it could not be chosen by the participants directly but was assigned during the
evaluation in case that participants did not see particular distortions in certain trials. The scale
used here is reversed in comparison to the EBU scale and is actually the one used historically
by the printing industry.

3.2. Ezxperiments with Naive Observers

The experiments with naive observers used patterns presented on-screen only, in order to es-
tablish full control of the presentation and eliminate any additional sources of noise which are
inevitably introduced in the full process of printing and scanning of patterns. The patterns were
presented on analogue screens with analogue input which allowed for a luminance resolution
equivalent to roughly 10 bits. The set of patterns consisted of 30 images with a total of 75 streak
distortions. For each participant three session were conducted. The whole set was presented dur-
ing each session. The participants marked the position of a distortion by clicking with the mouse
and entered the level of distortion (grade) with the keyboard. The distortions for the whole
set were generated in a random fashion. This randomized set was used for all participants and
sessions. The generation parameters included the number, position and type (Gauss or sharp
edge) of distortions, width of the distortion, width of the edge, and contrast.

The participants were students with no prior involvement with the printing industry (except
for being exposed to printed products like books, magazines etc. in their daily life). They had
no experience with an evaluation of printings task as required in this experiment. In total 21
participants participated in the experiment. Six of them were excluded from the evaluation
because they either did not finish all sessions or had a significantly higher deviation of responses
from the average.

3.3. Experiments with Experts from the Printing Industry

This experiment involved evaluation of real printings and was done by experts from various com-
panies from the printing industry (Heidelberger Druckmaschinen, Koenig & Bauer, Manroland).
In total, 52 printings were specially produced for the purpose of this experiment. Among them,
36 contained artificially generated distortions while the remaining 16 printings contained realistic
distortions produced by an imprecisely configured printing machine. In the case of the artificial
patterns, contrast, position, width of the distortion, and width of edges were varied.

The evaluation process was conducted under standardized conditions according to [41]. It re-
quires the printed matter to be illuminated by a standard illuminant D50, the surround and
backing of the matter to be neutral and matt, and the visual environment to be arranged
in a way that interference with the viewing task is minimized. In practice a special arrange-
ment (tiltable table with grey, matt surface and standard illuminant) is used in an environment
shielded against external light. Each participant completed three sessions. The positions for the
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Table 1. Deviations of observers’ assessments

Naive  Expert

Intra-individually averaged  0.382 0.309
Inter-individually 0.707 0.454

realistic-distortion patterns were fixed by the experts before the actual assessment. The posi-
tions of artificial distortions were known beforehand, but in the case of additional distortions
as a result of the printing process, the positions were mapped manually by experts as well. The
level of distortion at a specific position was recorded by an assistant. Details on the experiment
can be found in [42].

In contrast to former experiments with on-screen presentation, several sources of noise influ-
enced the results of this experimental setup. The printing process itself introduced considerable
noise so that in the case of artificial patterns, the signal was noisy, even though the parame-
ters used for generation were known. With regard to the realistic-distortion patterns, the actual
signal of the pattern was not known at all.

3.4. FEwaluation

A local maximum search was used for mapping assessments to the corresponding positions in
the model output. For the on-screen experiments this was due to the fact that the non-expert
participants were often sloppy with regard to clicking at the exact location of the distortion, so
that the recorded positions were often several pixel off. In the case of the expert experiments
with printings the positions were given in millimetres and were very precise, but the scans of the
printings mapped roughly five pixels to one millimetre. Due to this the position in millimetres
only indicated an area in the model output.

In order to assess participants’ performance, the standard deviation of the participants’ re-
sponses was calculated. The deviations of the responses indicate how stable the observers’ assess-
ments were. The performance of the model was measured by its correlation with the participants’
average assessment for each distortion.

4. Results

4.1. Stability of Assessments

Table 1 shows the standard deviations (s.d.) of the responses of the naive and expert ob-
servers. The deviations were calculated intra-individually (average for each participant) and
inter-individually (average for each distortion). The intra-individually averaged responses pro-
vide information on the consistency of an observer with regard to his or her own responses, i.e.
the extent to which the participant can reproduce his or her own responses over subsequent ses-
sions. The inter-individually averaged responses, on the other hand, show how the participants
agree with each others assessments.

One can see that both naive and expert observers were able to reproduce their own responses
in a quite reliably. The experts were slightly more consistent, but the difference to the naive
observers was only 0.073. With regard to the inter-individual deviations (deviations of responses
over all participants for each distortion), the experts were much more consistent as a group. The
experts were actually trained to assess distortions on an absolute scale, since their daily work
requires this particular skill. The naive observers, on the other hand — even though consistent
in their own opinion — have only received a brief explanation of the scale with some examples
of the distortion levels to be expected. Different cognitive strategies [21] can thus be expected
to be present in this group. With no further feedback on the ratings of the other subjects it is
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Figure 5. Correlation between model and inter-individually averaged data for (a) naive observers and (b) experts.

thus not surprising that the results of this group varied to a much larger degree.

4.2. Correlation Between Model and Assessments

The model parameters were fitted with 3-fold cross-validation in order to check for effects of over-
fitting. The data was split according to random subsets of subjects. The maximum correlations
achieved in individual runs were 0.811 and 0.805 without indications of over-fitting. For the
results presented here the model has been fitted with the whole data set.

The correlation is shown for inter-individually averaged data where the average assessment for
each distortion was mapped to the model output. Figure 5(a) shows the results for naive observers
while Figure 5(b) represents the expert observers. Interestingly the naive observers achieved
a higher correlation than the expert observers. With regard to the deviations of assessments
(Table 1) this result is somewhat surprising. Though the processing pipeline for the experiment
with printings introduced additional noise in comparison to the on-screen experiments, it is not
clear whether this circumstance already accounts for the better results with naive observers.

A further difference between the two experiments is the respective set of test patterns. While in
the on-screen experiments the strength of the streaks was approximately uniformly distributed
over the grade scale, the expert experiment used a high percentage of realistic prints, which
contain many barely visible streaks. Ratings performed close to the threshold of perception can
be a problem, as shown below.

4.3. Patterns at Threshold of Perception

Printings are generally noisy with regard to the luminance signal. Therefore many weak streaks
are difficult to detect even for trained observers. This is illustrated by the fact that naive observers
who have performed the assessment task with realistic printings found approximately three
streaks per print whereas the experts found up to 25. However, almost all additional streaks
found by the expert group were rated with 1 (barely visible)!. These distortions pose a problem.
While the model can generate output lower than 1 (if the signal is weak), the observers are stuck
with the 1 as the lowest grade available (0 is reserved for non-detected streaks). Even though the
signal would require a lower grade, the scale does not offer it and a sort of floor effect becomes
visible.

ISince the locations of the streaks are marked, they will typically receive a grade 1, even if critical testing without markings
would presumably reveal that some participants are not able to see them.
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4.83.1.  Correlation Between Assessments and Model with Varying Percentage of
Near-threshold Distortions

The correlations between model and participants’ assessments for the whole set, including
the afore-mentioned distortions near the threshold of perception, have already been presented
in figure 5(b). We now analyse the influence of those near-threshold responses on the overall
performance.

Subsets of the data with a varying percentage of near-threshold responses have been investi-
gated with regard to their effect on the correlation of the model predictions. The criterion for
assigning a particular streak to the near-threshold group was the percentage of minimum grades
given to that streak. As the minimum grade was effectively given to streaks which were barely
visible or not seen at all by some observers, this criterion offers a flexible way to determine the
subset of near-threshold streaks. The strictest version of the criterion is to mark a streak as
near-threshold if at least one minimum grade has been assigned to it by one of the participants.
In subsequent plots assessments of distortions are plotted in red if they contain a minimum grade
response.

Figure 6(a) shows the subset consisting of inter-individually averaged assessments, which re-
ceived at least one minimum grade response. As one can see, the apparent variance of the model
output is quite high, which is in correspondence to the aforementioned hypothesis that in this
regime different signal levels are mapped to the minimum grade. The omission of this subset,
i.e. of streaks which have received at least one minimum grade from the evaluation, leads to an
increase in the correlation for the averaged data from 0.81 to 0.88, as shown in Figure 6(b). Note
that although the overall dynamic range of the data is reduced, the correlation increases. This
corroborates our hypothesis that the excluded subset is not well behaved.

6
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4 5 6

Scores chores
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Figure 6. Correlation between model and inter-individually averaged assessments for ratings containing at least one mini-
mum grade response (a) and for ratings not containing the minimum grade (b).

5. Conclusion

We have presented a model for the automatic prediction of the perceived strength of streak
distortions in offset printing. The model is based on recent neurophysiological and psychophysical
results. It can describe shape effects due to the shape of the luminance function of a streak and
masking effects as caused by the configuration in its spatial surround.

Assessments on a large number of streak patterns have been collected in experiments with naive
and expert observers. We have then shown that the model shows a good correlation in predicting
the perceived strength of these distortions. The differences between experiments on-screen and
with prints can be attributed to different participants as well as the different media used for
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presentation. It is further possible that mechanisms for adaptation of the visual system might
perform differently for self-luminous or illuminated media. Since the L* values differed from
luminance values only by a constant for the current data set, specific effects on the predictions
from use of the ROG mechanism are not to be expected. This is supported by cross-checks
between model fits from on-screen and prints experiments, which showed consistent results with
the on-screen data being luminance values and the print data L*.

The prediction of distortions close to the perceptual threshold proved to be problematic,
resulting in relatively large variations of the model responses for barely visible distortions. The
removal of distortions which were rated with the minimum grade increased the correlation of
the model predictions substantially, although the dynamic range of the data has been reduced
by this removal. If specifically a modelling of barely visible distortions is intended, a better
approach would be to perform 2AFC threshold measurements instead of quality judgements,
and use these for appropriate model fits in the threshold range. However, for applications which
require a graded evaluation the suggested model of the human visual system seems quite useful.
It thus appears well suited as part of a system for the automatic evaluation of printings.
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Statistical Invariants of Spatial Form:
From Local AND to Numerosity

Christoph ZETZSCHE !, Konrad GADZICKI and Tobias KLUTH
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Abstract Theories of the processing and representation of spatial form have to take
into account recent results on the importance of holistic properties. Numerous ex-
periments showed the importance of “set properties”, “ensemble representations”
and “summary statistics”, ranging from the “gist of a scene” to something like “nu-
merosity”. These results are sometimes difficult to interpret, since we do not ex-
actly know how and on which level they can be computed by the neural machinery
of the cortex. According to the standard model of a local-to-global neural hierarchy
with a gradual increase of scale and complexity, the ensemble properties have to
be regarded as high-level features. But empirical results indicate that many of them
are primary perceptual properties and may thus be attributed to earlier processing
stages. Here we investigate the prerequisites and the neurobiological plausibility
for the computation of ensemble properties. We show that the cortex can easily
compute common statistical functions, like a probability distribution function or an
autocorrelation function, and that it can also compute abstract invariants, like the
number of items in a set. These computations can be performed on fairly early lev-
els and require only two well-accepted properties of cortical neurons, linear sum-
mation of afferent inputs and variants of nonlinear cortical gain control.

Keywords. shape invariants, peripheral vision, ensemble statistics, numerosity

Introduction

Recent evidence shows that our representation of the world is essentially determined by
holistic properties [1,2,3,4,5,6]. These properties are described as “set properties”, “en-
semble properties”, or they are characterized as “summary statistics”. They reach from
the average orientation of elements in a display [1] over the “gist of a scene”[7,8], to the
“numerosity” of objects in a scene [9]. For many of these properties we do not exactly
know by which kind of neural mechanisms and on which level of the cortex they are
computed. According to the standard view of the cortical representation of shape, these
properties have to be considered as high-level features because the cortex is organized in
form of a local-to-global processing hierarchy in which features with increasing order of
abstraction are computed in a progression of levels [10]. At the bottom, simple and lo-
cally restricted geometrical features are computed, whereas global and complex proper-
ties are represented at the top levels of the hierarchy. Across levels, invariance is system-
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Research supported by DFG (SFB/TR 8 Spatial Cognition, A5-[ActionSpace])

95



atically increased such that the final stages are independent of translations, rotations, size
changes, and other transformations of the input. However convincing this view seems on
first sight, it creates some conceptual difficulties.

The major difficulty concerns the question of what exactly is a low-level and a high-
level property. Gestalt theorists already claimed that features considered high-level ac-
cording to a structuralistic view are primary and basic in terms of perception. Further
doubts have been raised by global precedence effects [11]. Similar problems arise with
the recently discovered ensemble properties. The gist of a scene, a high-level feature
according to the classical view, can be recognized in 150 msec [7,12,13,14] and can be
modeled using low-level visual features [8]. In addition, categories can be shown to be
faster processed than basic objects, contrary to the established view of the latter as entry-
level representations [15]. A summary statistics approach, also based on low-level visual
features, can explain the holistic processing properties in the periphery of the visual field
[4,16,17]. What is additionally required in these models are statistical measures, like
probability distributions and autocorrelation functions, from which it is not known how
and on which level of the cortical hierarchy they can be realized.

One of the most abstract ensemble properties seems to be the number of elements
in a spatial configuration. However, the ability to recognize this number is not restricted
to humans with mature cognitive abilities but has also been found in infants and animals
[9,18], recently even in invertebrates [19]. Neural reactions to numerosity are fast (100
msecs in macaques [20]). And finally there is evidence for a “direct visual sense for
number” since number seems to be a primary visual property like color, orientation or
motion, to which the visual system can be adapted by prolonged viewing [21].

The above observations on ensemble properties raise a number of questions, from
which the following are addressed in this paper: Sect. 1: Can the cortex compute a prob-
ability distribution? Sect. 2: And also an autocorrelation function? By which kind of
neural hardware can this be achieved? Sect.3: Can the shape of individual objects also
be characterized by such mechanisms? Sect. 4: What is necessary to compute such an
abstract property like the number of elements in a spatial configuration? Can this be
achieved in early sensory stages?

1. Neural Computation of a Probability Distribution

Formally, the probability density function p,(e) of a random variable e is defined via the
cumulative distribution function: p,(e) = deE"—e(e) with P,(e) = Pr[e < e]. Their empirical
counterparts, the histogram and the cumulative histogram, are defined by use of indicator
functions. For this we divide the real line into m bins (el e(+1)] with bin size Ae =

el t1) — o)) For each bin i, an indicator function is defined as

1,if el) < e < elitD)
0, else

0i(e) = 1i(e) = { 0

An illustration of such a function is shown in Fig. 1la. From N samples ¢; of the ran-
dom variable e we then obtain the histogram as h(i) = %Zlk\’:l Qi(ex). The cumulative
histogram H,(e) can be computed by changing the bins to (e(!),e(+1)] (cf. Fig. 1b), and
by performing the same summation as for the normal histogram. The reverse cumulative
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Figure 1. Indicator functions. Basic types are: (a) indicator function for computation of a classical histogram.
(b) indicator function for a cumulative histogram. (c) indicator function for a reverse cumulative histogram.

histogram H (i) is simply the reversed version of the cumulative histogram. The corre-
sponding bins are Ae; = (e(l) ) e(’”“)] and the indicator functions are defined as (Fig. 1c)

1,if e > el
0, else

o) = 1e) = { @
The corresponding system is shown in Fig. 2.

The three types of histograms have identical information content since they are re-
lated to each other as

h(i)=H((i+1))—H(i)=H(i)—H(i+1) and H(i)zl—H(i):Zl’lh(j). 3)

Measurements Indicator Functions Summation Histogram
Qi(e)
14
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el
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eN
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2
Albrecht and Hamilton (1982)
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Figure 2. Computation of the reverse cumulative histogram. (a) shows the set of input variables e to e, over
which the histogram should be computed. Each of these variables is input to a set of indicator functions Q;(ex).
For each bin of the histogram there is a summation unit S; which sums over all indicator function outputs with
index i, i.e. over all Q;(ey).

(b) The response functions of three neurons in the visual cortex [22]. They show a remarkable similarity to the
indicator functions for the reverse cumulative histogram. First, they come with different sensitivities. Second,
they exhibit an independence on the input strength: once the threshold and the following transition range is
exceeded the output remains constant and does no longer increase when the input level is increased.
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Figure 3. Neurobiological computation of a reverse cumulative histogram. The upper row shows several ex-
amples of input probability distributions. The second row shows the corresponding reverse cumulative his-
tograms computed by a dense set of simulated neurons. The third row shows the estimated probability distri-
butions as derived from the neural representation by use of Eq. (3).

How does all this relate to visual cortex? Has the architecture shown in Fig. 2a any
neurobiological plausibility? The final summation stage is no problem since the most
basic capability of neurons is computation of a linear sum of their inputs. But how about
the indicator functions? They have two special properties: First, the indicator functions
come with different sensitivities. An individual function does only generate a non-zero
output if the input e exceeds a certain level, a kind of threshold, which determines the
sensitivity of the element e(”) in Eq. (2) and Fig. lc. To cover the complete range of
values, different functions with different sensitivities are needed (Fig. 2a). Second, the
indicator functions exhibit a certain independence of the input level. Once the input is
clearly larger than the threshold, the output remains constant (Fig. 1c).

Do we know of neurons which have such properties, a range of different sensitivi-
ties, and a certain independence of the input strength? Indeed, cortical gain control (or
normalization), as first described in early visual cortex (e.g. [22]) but now believed to
exist throughout the brain [23], yields exactly these properties. Gain-controlled neurons
(Fig. 2b) exhibit a remarkable similarity to the indicator functions used to compute the
reverse cumulative histogram, since they (i) come with different sensitivities, and (ii) pro-
vide an independence of the input strength in certain response ranges.

The computation of a reverse cumulative histogram thus is well in reach of the cor-
tex. We only have to modify the architecture of Fig. 2a by the smoother response func-
tions of cortical neurons. The information about a probability distribution available to the
visual cortex is illustrated in Fig. 3. The reconstructed distributions, as estimated from the
neural reverse cumulative histograms, are a kind of Parzen-windowed (lowpass-filtered)
versions of the original distributions.

2. Neural Implementation of Auto- and Cross-Correlation Functions

A key feature of the recent statistical summary approach to peripheral vision [4,6,24,16]
is the usage of auto- and cross-correlation functions. These functions are defined as

1 N2
hi)=5 ) el)ogli+h), )
k=—N/2+1
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Figure 4. Different types of AND-like functions. Each function is of the type gx = g(si,s;), i.e. assigns
an output value to each combination of the two input values. The upper row shows the functions as surface
plots, the lower row as iso-response curves. Left: Mathematical multiplication of two inputs. Center: AND-like
combinations that can be obtained by use of cortical gain control (normalization). The upper left figure shows
the classical gain control without additional threshold. The upper right figure shows the same mechanism with
an additional threshold. This results in a full-fledged AND with a definite zero response in case that only one
of the two inputs is active. Right: The linear sum of the two input values for comparison purposes.

where autocorrelation results if e(k) = g(k) and where o indicates multiplication. With
respect to their neural computation, the outer summation is no problem, but the cru-
cial function is the nonlinear multiplicative interaction between two variables. A neu-
ral implementation could make use of the Babylonian trick ab = }[(a+b)? — (a — b)?|
[25,26,27], but this requires two or more neurons for the computation and thus far there
is neither evidence for such a systematic pairing of neurons nor for actual multiplicative
interactions in the visual cortex. However, exact multiplication is not the key factor: a
reasonable statistical measure merely requires provision of a matching function such that
e(k) and g(i + k) generate a large contribution to the autocorrelation function if they are
similar, and a small contribution if they are dissimilar. For this, it is sufficient to provide
a neural operation which is AND-like [27,28]. Surprisingly, such an AND-like operation
can be achieved by the very same neural hardware as used before, the cortical gain con-
trol mechanism, as shown in [28]. Cortical gain control [22,29] applied to two different
features s;(x,y) and s;(x,y) can be written as

Si+s;

8 (xvy) Zg(si(x,y),s-(x,y)) ‘= max 07 -0 (5)
‘ ! (y/s?+s3+€)V2

where k = k(i, j), € is a constant which controls the steepness of the response and © is a
threshold. The resulting nonlinear combination is comparable with an AND-like opera-
tion of two features and causes a substantial nonlinear increase of the neural selectivity,
as illustrated in Fig. 4.

Of course there will be differences between a formal autocorrelation function and
the neurobiological version, but the essential feature, the signaling of good matches in
dependence of the relative shifts will be preserved (Fig. 5).
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Figure 5. Mathematical and neurobiological autocorrelation functions. (a) shows a test input and (b) the cor-
responding mathematical (red dotted) and neurobiological (blue) autocorrelation function.
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Figure 6. Different shapes and the corresponding integral features. We used parameter combinations of six
different orientations 6; = (i — 1)m/6, i = 1,...,6, and four different scales r; = 27¢ i=1,...,4. The radial
half-bandwidth was set to f., = %r and the angular half-bandwidth was constant with fy , = ©/12. Each
parameter combination creates pairs of variables for each x,y-position which are AND-combined by the gain
control mechanism described in Eq. (5) as gi(x,y) = g(si(x,y),5;(x,y)).

3. Figural Properties from Integrals

We extracted different features s, from the image luminance function [ = I(x,y) by
applying a Gabor-like filter operation s, (x,y) = (I x.% ~1(H,g))(x,y) where .F ! de-
notes the inverse Fourier transformation and the filter kernel H, g is defined in the spec-
tral space. We distinguish two cases (even and odd) which can be seen in the following
definition in polar coordinates:

r— h—0
fléen(frvfe) = cos” (%chfr,hr) cos? <%]§}0,h ) ’(fr7f9> S Qr,@
| 0 ,else,

with Q, ¢ := {(fr,fe)’fr € [r —2frp,r+ 2fr,h] A fog € [9 —2fon, 0+ 2f9,h] N [9 + -
2fo.n, 0 +7T+2fo]}, where f,., denotes the half-bandwidth in radial direction and fg
denotes the half-bandwidth in angular direction. H;ff,fd is defined as the Hilbert trans-
formed even symmetric filter kernel.

Various AND combinations of these oriented features (see caption Fig. 6) are ob-
tained by the gain-control mechanism described in Eq. (5). The integration over the
whole domain results in global features Fy := [p2 gx(x,y) d(x,y) which capture basic

shape properties (Fig. 6).

4. Numerosity and Topology

One of the most fundamental and abstract ensemble properties is the number of elements
of a set. Recent evidence (see Introduction) raised the question at which cortical level
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the underlying computations are performed. In this processing, a high degree of invari-
ance has to be achieved, since numerosity can be recognized largely independent of other
properties like size, shape and positioning of elements. Models which address this ques-
tion in a neurobiologically plausible fashion, starting from individual pixels or neural re-
ceptors instead of an abstract type of input, are rare. To our knowledge, the first approach
in this direction has been made in [30]. A widely known model [31] has a shape-invariant
mapping to number which is based on linear DOG filters of different sizes, which sub-
stantially limits the invariance properties. A more recent model is based on unsupervised
learning but has only employed moderate shape variations [32]. In [30] we suggested
that the necessary invariance properties may be obtained by use of a theorem which con-
nects local measurements of the differential geometry of the image surface with global
topological properties [30,33]. In the following we will build upon this concept.

The key factor of our approach is a relation between surface properties and a topo-
logical invariant as described by the famous Gauss-Bonnet theorem. In order to apply
this to the image luminance function / = I(x,y) we interpret this function as a surface
S:={(x,,z) € R*|(x,y) € Q,z=1[(x,y)} in three-dimensional real space. We then apply
the formula for the Gaussian curvature

ZXX(xay)l}’)’(xvy) - lxy(xvy)z
2

K(x,y)= , 6
(x.7) (1 +Le(x,y)* + 1y(x,9)?) ©
where subscript denotes the differentiation in the respective direction (e.g. I, = %).

The numerator of (6) can also be written as D = A; A, where A, , are the eigenvalues of
the Hessian matrix of the luminance function /(x,y) which represent the partial second
derivatives in the principal directions. The values and signs of the eigenvalues give us
the information about the shape of the luminance surface S in each point, whether it
is elliptic, hyperbolic, parabolic, or planar. Since Gaussian curvature results from the
multiplication of the second derivatives A » it is zero for the latter two cases. It has been
shown that this measure can be generalized in various ways, in particular towards the use
of neurophysiologically realistic Gabor-like filters instead of the derivatives [27,30]. The
crucial point, however, is the need for AND combinations of oriented features [27,30]
which can be obtained as before by the neural mechanism of cortical gain control [28].

The following corollary from the Gauss-Bonnet theorem is the basis for the invari-
ance properties in the context of numerosity.

Corollary 4.1 Let S C R3 be a closed two-dimensional Riemannian manifold. Then

/KdA:4J7:(1—g) )
S

where K is the Gaussian curvature and g is the genus of the surface S.

We consider the special case where the luminance function consists of multiple objects
(polyhedra with orthogonal corners) with constant luminance level. We compare the sur-
face of this luminance function to the surface of a cuboid with holes that are shaped like
the polyhedra. The trick is that the latter surface has a genus which is determined by the
number of holes in the cuboid and which can be determined by the integration of the
local curvature according to Eq. (7). If we can find the corresponding contributions of

101



the integral on the image surface, we can use this integral to count the number of ob-
jects. We assume the corners to be locally sufficiently smooth such that the surfaces are
Riemannian manifolds. The Gaussian curvature K then is zero almost everywhere except
on the corners. We hence have to consider only the contributions of the corners. It turns
out that these contributions can be computed from the elliptic regions only if we use dif-
ferent signs for upwards and downwards oriented elliptic regions. We thus introduce the
following operator which distinguishes the different types of ellipticity in the luminance
function. Let A; > A,, then the operator N(x,y) := |min(0, 4, (x,y))| — | max(0,A2(x,y))|
is always zero if the surface is hyperbolic and has a positive sign for positive elliptic-
ity and a negative one for negative ellipticity. We thus can calculate the numerosity fea-
ture which has the ability of counting objects in an image by counting the holes in an
imaginary cuboid as follows:

F:/ N(x,y)
(14 L(x,y)2 + 1y (x,7)2) 3

d(x,y). ®)

The crucial feature of this measure are contributions of fixed size and with appropriate
signs from the corners. The denominator can thus be replaced by a neural gain control
mechanism and an appropriate renormalization. For the implementation here we use a
shortcut which gives us straight access to the eigenvalues. The numerator D(x,y) of (6)
can be rewritten as

4 4

1 1 1
D(x,y) = Leclyy = 5 (b —lw)* = 7 [(leby)* = (e = ) + (b = b))] = 7 (A =€)

—g2

©))
with u := xcos(mw/4) + ysin(n/4) and v := —xsin(xw/4) 4 ycos(m/4). The eigenvalues
then are A; » = 3 (Al & |¢|) and we can directly use them to compute N(x,y). Application
of this computation to a number of test images is shown in Fig. 7.

1.0 4.0 1.01

2.99
Figure 7. Based on a close relation to topological invariants the spatial integration of local curvature fea-
tures can yield highly invariant numerosity estimates. The numerical values in the last row are the normalized
integrals of the filter outputs (middle row).
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5. Conclusion

Recent evidence shows that ensemble properties play an important role in perception and
cognition. In this paper, we have investigated by which neural operations and on which
processing level statistical ensemble properties can be computed by the cortex. Compu-
tation of a probability distribution requires indicator functions with different sensitivi-
ties, and our reinterpretation of cortical gain control suggests that this could be a basic
function of this neural mechanism. The second potential of cortical gain control is the
computation of AND-like feature combinations. Together with the linear summation ca-
pabilities of neurons this enables the computation of powerful invariants and summary
features. We have repeatedly argued that AND-like feature combinations are essential
for our understanding of the visual system [27,30,34,35,36,28]. The increased selectivity
of nonlinear AND operators, as compared to their linear counterparts, is a prerequisite
for the usefulness of integrals over the respective responses [30,28]. We have shown that
such integrals of AND features are relevant for the understanding of texture perception
[37], of numerosity estimation [30], and of invariance in general [28]. Recently, integrals
over AND-like feature combinations in form of auto- and cross-correlation functions
have been suggested for the understanding of peripheral vision [4,16,17].

A somewhat surprising point is that linear summation and cortical gain control, two
widely accepted properties of cortical neurons, are the only requirements for the com-
putation of ensemble properties. These functions are already available at early stages of
the cortex, but also in other cortical areas [23]. The computation of ensemble properties
may thus be an ubiquitous phenomenon in the cortex.
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Neural Computation of Statistical Image Properties in Peripheral Vision
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In the peripheral field of view our visual system provides a much lower image quality than in the central region. This
has often been attributed to a mere loss of spatial acuity, but recent investigations suggest that the system uses a
more refined strategy. For lowering its data load it computes a statistical summary representation based on low-level
image features. In a recent modeling approach the summary statistics refer to classical statistical measures, like auto-
and cross- correlations, operating on wavelet-like filter outputs.

Here we investigate how such a statistical representation can be obtained in a neurobiologically plausible fashion. For
this, we consider both the elementary neural operations and the architectural properties. For example, the
neurobiological plausibility of multiplications which are an essential component of classic statistical operations, is
unclear and often critically debated. Also, it remains to be determined how the characterization of a statistical
distribution, classically achived by moments or histograms, can be achieved by neurobiological hardware.
Furthermore, it is unclear which specific visual features are actually best suited for an efficient statistical summary
representation.

We address these problems by considering how basic neural nonlinearities, like cortical gain control, can contribute
to the computation of statistical properties, how basic neural selectivities, e.g. for intrinsically two-dimensional
signals are related to statistical features, and how results from the promising domain of deep learning can help to
understand the role of architectural properties in a statistical representation. We show that the visual cortex can
provide a reliable statistical characterization of the visual environment, and we discuss which role this representation
can play for different visual tasks, e.g., for object recognition, gist estimation, and localization.

Keywords: peripheral vision, visual crowding, neuro-biologically motivated statistics, deep networks, image
compression, localization
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Multimodal Convolutional Neural Networks for Human Activity
Recognition*

Konrad Gadzicki, Razieh Khamsehashari and Christoph Zetzsche!

Abstract— We investigated multimodal fusion with convolu-
tional neural networks (CNN) for activity recognition. Out of
the number of possible modalities, we have focused on RGB
video, optical flow video and skeleton data. Our work here
makes use of the “NTU RGB+D” dataset, as preparation for a
later application to a large-scale database (project “EASE”). By
combining the output layers of state of the art CNNs, we have
implemented a late fusion approach. In addition to the fused
CNN architecture, we have also investigated the performance
of the individual CNNs in unimodal mode, and could improve
the performance of skeleton classification on this dataset with
regard to the literature.

I. INTRODUCTION

Human activity recognition has become a prominent re-
search area due to its potential application in video surveil-
lance, human computer interfaces, ambient assisted living,
human-robot-interaction, autonomous driving etc. Within
the collaborative research center “EASE” (http://www.ease-
crc.org), human activity recognition serves as a first step
towards generating instructions for robots on how to perform
actions. Activity recognition can be based on a variety
of features and part of the work in “EASE” is centered
around the acquisition of large volumes of high-dimensional
biosignal data from humans performing everyday activities
[32], [33], [31].

Along with the general development in artificial intelli-
gence, deep learning techniques have also gained exceptional
achievements in human activity recognition. Particularly,
deep learning methods based on the Recurrent Neural Net-
works (RNN) and Convolutional Neural Networks (CNN)
architectures have shown great performance in classification
tasks by learning discriminant features from large amounts
of data.

In the case of human activity recognition we are dealing
with temporal data, e.g. video and audio streams or bio-
sensor readings over time. In order to apply CNNs the usual
2D convolution used for images has to be expanded to
three dimensions, making it a spatio-temporal convolution
for videos.

While remarkable results have already been achieved by
unimodal processing of RGB, skeleton, depth, audio, bio-
signals, etc., effective deep networks for fusion of mul-
timodal data represent a promising research direction. A

*This work was supported by DFG (German Research Foundation) as
part of Collaborative Research Center “EASE - Everyday activities Science
and Engineering” (http://www.ease-crc.org)

TAuthors are with the Faculty of Mathematics and
Computer Science, University of Bremen, Bremen,
Germany konrad.gadzicki@uni-bremen.de

rkhamseh@uni-bremen.de zetzsche@uni-bremen.de

system utilizing different sources of data simultaneously has
the potential to substantially improve the performance of
current unimodal approaches. Our approach hence aims at
the processing of such multimodal data with spatio-temporal
convolutional neural networks.

II. RELATED WORK

A. Data for Activity Recognition

Activity recognition can be performed on a wide variety of
features and a large number of datasets have been provided
(for review see [26], [54]). Recent approaches in acitivity
recognition often work on RGB-D data. These consist of
RGB video and accompanying depth maps and provide two
useful modalities for human activity recognition. Skeleton
data are a third modality of interest, and can be extracted
from RGB-D data as well. The RGB channel provides infor-
mation with regard to shape, color and texture from which
rich features can be extracted. This includes, for example,
the computation of optical flow. The depth channel on the
other hand is rather invariant to changes in color, texture
and illumination, thereby providing a certain robustness with
regard to the perception of a scene. By providing 3D struc-
tural information it helps with segmentation, determination
of shapes (e.g., a human silhouette) and in the computation
of skeleton data. Such skeleton data are of particular interest
for human activity recognition as they carry high level
information in the form of abstracted 3D joint positions.

The acquisition of large volumes of high-dimensional
biosignal data from humans performing everyday activities
is an important goal of the collaborative research center
“EASE” [32], [33], [31]. The EASE-Table-Setting-Dataset
(EASE-TSD) is currently collected and is intended to benefit
cognitive humanoid household robots. The final dataset is
planned to consist of synchronously recorded biosignals
from about 100 participants performing everyday activities
while describing their task applying think-aloud protocols.
Biosignals encompass multimodal multisensor streams of
near and far speech and audio, video, marker-based and
motion tracking, eyetracking, as well as EEG and EMG of
humans performing everyday activities.

The EASE datatset has yet to be extended to larger size.
An interesting large-scale dataset that is currently available is
NTU RGB+D [41]. This dataset covers both a large number
of subjects and of activity classes. It will hence be used for
the initial phase of our investigations which we report in this
paper.
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B. Activity Recognition Models

The specific properties of the various modalities have led
to different processing strategies. For instance, the RGB
channel can be processed with a spatio-temporal CNN [48],
[47], [22], [17], either on its own or together with derived
optical flow [45], [5] through a two-stream CNN or as a
multistage CNN [44], [57]. Another approach is to use RNNs
for processing of RGB data [42], [16], [4], [8], [35]. The
depth channel can be similarly processed with CNN [50],
[38] or with a combination of CNN and RNN [43]. With
regard to skeleton data, processing with CNN can be enabled
by interpreting joint positions as image data [19], [10], [13],
[26] or by using a Lie group representation [15]. There
also exist RNN-based approaches [9], [11], [49], a Deep
Boltzmann Machine (DBM) approach [39] and a Hidden
Markov Model (HMM) with a deep network as a state
probability predictor [55].

Apart from RGB-D data, bio-signals are significant and
useful data in human activity recognition applications. For
instance, [40] proposes two architectures consisting of a
Deep Belief Network and a CNN, that recognize human
activities in real time using multiple EEG sensors fusion in
an unconstrained environment and selects a smaller sensor
suite (similar performance) for a lean data collection system.
For sSEMG, deep learning approaches have been proposed as
well [3], [12]. [2] presents a new transfer learning scheme
employing a CNN to leverage inter-user data within the
context of SEMG-based gesture recognition.

While these approaches work well for a specific modality,
they do not necessarily work well for all modalities. Different
modalities have their own particular properties, and the
way of combining them with deep learning approaches is
challenging.

I1II. MULTIMODAL FUSION
A. Multimodal Fusion Strategies

The general idea behind multimodal approaches to ma-
chine learning is to use several data sources as an input in
order to increase the performance of the system in terms
of robustness or recognition performance. Different data
sources might help to remove ambiguity or to improve the
data quality in case of noise. Multimodal machine learning
has several challenges [34], one of which is the fusion of
different modalities.

Existing approaches can be divided into early, late and
hybrid fusion [7], based on where in the processing pipeline
the fusion takes place. Early fusion [46] merges data sources
right at the start. Usually a features extraction process, which
operates on the unimodal data, takes place before merging,
but it is also possible to fuse raw data. The features are then
fused into a single representation, in the most simple case by
concatenation. In this case we have to deal with challenges
with regard to how well the individual sources can be
organized so that a unified representation suitable for further
processing is achieved. Early fusion has a great potential for
increasing the overall performance by exploitation of cross-
correlations between individual data sources.

Late fusion [46], on the other hand, merges data only
after full unimodal processing. The unimodal processing
part is done by individual models which opens the oppor-
tunity of using well established, sophisticated approaches
for particular modalities. Fusion is performed after unimodal
classification results have been generated, by merging them
with strategies like averaging, majority voting etc. The major
drawback of late fusion is that little exploitation of cross
correlations is possible.

Hybrid approaches try to make usage of both fusion
methods. This is achieved by one or more paths using early
fusion, e.g. pairwise combination of modalities [23] which
are processed together, as well as multiple paths for the
unimodal processing of data. Late fusion is then used to
merge the results from all paths. This approach allows for
the exploitation of cross-correlations between modalities as
well as for the usage of sophisticated models on individual
modalities.

B. Multimodal Fusion for Convolutional Neural Networks

With the ongoing success of convolutional neural networks
across various fields of application one can argue that the
investigation of multimodal CNNs is a promising research
direction. Again it is possible to use early fusion and combine
features or raw data at an early level. The concatenation
of raw data requires usually at least a minimum of pre-
processing in order to generate spatio-temporally aligned
samples, since sensory devices operate rarely with equal
sampling frequencies. If the early fusion is moved to the fea-
ture level, the requirement for spatio-temporally alignment
remains, but feature extraction can be achieved with several
methods. In the classic case features are extracted from
raw data with convolutional units which were trained from
scratch. But it is also possible to bootstrap the convolutional
units with weights already trained on a similar modality,
e.g. using weights trained on Imagenet [6] data in order to
bootstrap a CNN for video data [5]. Lastly one can also use
designed convolutional units which would resemble applying
a filter bank of parametrized filters. Late fusion can be
performed after a classification result has been generated by
unimodal networks. The structure of the individual networks
does not need to be similar to each other, again making the
fusion task trivial. In the most simple form, the individual
dense layers which usually serve as an output layer can
be summed and averaged. Hybrid approaches are possible
as well, combining both early and late fusion as described
above. Note that the hybrid approach is the computationally
most expensive, since it requires a set of unimodal as well
as fused networks.

We would like to investigate further ways to merge fea-
tures at different levels of the network architecture. Early and
late fusion are the two extremes of the processing pipeline,
but a fusion of features at intermediate level can lead to
different results than the combination of raw data/first fea-
tures or final predictions. Typically we receive more complex
and specific features the deeper we proceed in a network.
The fusion of such complex features correlated for several
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modalities can lead to better performance. Unfortunately due
to combinatorial explosion of the number of features it is
currently not feasible to perform such a fusion at higher
levels. If we want to fully exploit cross-correlations between
features, we have to perform the full combination of pairwise
features resulting in 2" — 1 combination for n features [23].
On lower levels though this method might be feasible with
current hardware.

IV. METHODS
A. Dataset

Since the EASE dataset is still in the making, we have
opted for using the NTU RGB+D dataset [41]. We have
selected this particular dataset because it offers several
modalities (RGB video, depth video, IR video and skele-
ton data). Furthermore, it is the largest set offering these
modalities with over 56k samples across 60 classes in three
different categories: daily, mutual, and health-related actions.
The actions were performed by 40 subjects, and recorded
from three view points with a Microsoft Kinect v2. Sample
frames of NTU RGB+D dataset are shown in Fig. 1.

Fig. 1. Sample frames of the NTU RGB+D dataset [41]. The images
illustrate variety in subjects, camera views and intra-class variation.

B. Modelling

So far, we have investigated late fusion with CNNs, as
well as the unimodal CNNs which we used for fusion. Here
we have taken existing CNNs which offer state of the art
performance while having an implementation in TensorFlow
[1]. The modalities used for our work are RGB video, optical
flow based on the RGB video and skeleton data. Our system
has been implemented in TensorFlow.

The architecture of the late fusion system is shown in
Fig. 2. The image and optical flow paths consist of “Kinetics
I3D” [5] which uses “Inception 3D” units for spatio-temporal
processing. The skeleton path consists of “Res-TCN” [19],
a residual network for temporal convolution. The other
modalities in Fig. 2 refer to potential further extensions.
The dense layers of the individual networks are summed,
generating the late fusion. We used sparse softmax cross
entropy for loss calculation during training.

Action

i
[

3D ConvNet 3D COnvNet 3D ConvNet 3D COnvNet]
Optical other |||
| Images |] | Flow |] | Skeleton ||] |
Fig. 2. Summation of dense layers of invididual CNNs as late fusion.

Based on the RGB videos, optical flow has been computed
with “FlowNet2” [20]. The original full HD RGB videos
were rescaled and cropped to 224x224 pixels, the same has
been done with the optical flow videos based upon the RGB
videos. The video duration was 10 seconds with 25 fps, with
the videos being looped if they were shorter. The skeleton
data was provided by the Kinect v2 and consist of the X,y,z
coordinates for 25 joints per person. There were maximally
two people tracked during the recording.

V. RESULTS
A. RGB Data

We started with the training of unimodal data streams. For
the RGB stream the training was done with data from “NTU
RGB+D” [41] and with preloaded weights for all layers
from “Kinetics I3D” [5]. We retrained only the dense layer,
which is a form of transfer learning [37]. The previously
trained network has been taught to discriminate actions from
a similar dataset and the task as such, activity recognition,
remains the same. We achieved an accuracy of 51% which
is slightly lower than reported by [30] who reached 56%.
Since we only retrained the output layers, this leaves room
for improvement by fine tuning the entire network.

B. Skeleton Data

In our experiments for skeleton data, the implementation
consists of two models called EASE-1 and EASE-2. The
same training and validation splits have been user for these
two models. For validation, we apply two standard testing
protocols. One is cross-subject, for which half of the subjects
are used for training and the rest are used for testing. The
other is cross-view, for which 67% of camera views are
considered as training data and the rest as test data. The
training on skeleton data provided by “NTU RGB+D” was
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first performed with the Keras implementation of “Res-
TCN” [19], with improved parameters, which we refer to
as “EASE-1” in Table 1. We use a weight decay of le™*
and stochastic gradient descent (SGD), and adopt the weight
initialization and batch normalization [21], but with no
dropout and a momentum value close to zero. This model is
trained with a mini-batch size of 128 on one GPU. We start
with a learning rate of 0.01, divide it by 10 when the testing
loss plateaus for more than 10 epochs.

TABLE I
MODIFIED ARCHITECTURE OF RES-TCN WITH HYPERPARAMETER
TUNING
Res-TCN[19] || EASE-1 EASE-2
Optimizer SGD SGD SGD
Nesterov acceleration True False False
Momentum 0.9 0.01 0.01
L-1 Regulizer le-4 le-4 False
Learning Rate 0.01 0.01 0.01
Batch size 128 128 128
Dropout 0.5 0.01 0.01
Epochs 200 300 200
Weight Initialization Scratch Scratch Pretraining

For “EASE-2”, the improved “Res-TCN” is implemented
in the TensorFlow deep learning framework. Instead of
training from scratch, we train the logits layer only and use
the pretrained weights from “EASE-1". All hyperparameters
are the same just apart from L-1 regularization in this case.

Table II compares the performance of our approach with
published results on the “NTU-RGB+D” [41] dataset. The
proposed method shows a considerable improvement on both
cross-subject and cross-view settings.

TABLE 11
ACCURACY (%) ON NTU RGB+D SKELETON DATASET

Method Cross Subject Cross View
HBRNN-L[9] 59.1 64.0
Dynamic Skeleton[14] 60.2 65.2
LieNet[15] 61.4 67.0
P-LSTM[41] 62.9 70.3
ST-LSTM[27] 69.2 71.7
Two-stream RNN[52] 71.3 79.5
Res-TCN[19] 74.3 83.1
Clips+CNN+MTLLN[18] 79.6 84.8
Skepxel[29] 81.3 89.2
ST-GCN[56] 81.5 88.3
EASE-1 79.3 86.1

EASE-2 82.7 —

Loss and accuracy curves for training and validation set
are shown in Fig. 3 and 4.

C. Multimodal Processing

The multimodal late fusion has been done in two variants.
The first combined two modalities, RGB video and skeleton,
and the second combined RGB video, optical flow and
skeleton with pretrained weights. Fig. 5 shows the accuracy
curve for the training with three modalities so far. In both

220
180‘
140
1.00

loss

0.600
0.200
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Fig. 3. Loss curve for “EASE-2" for training (orange) and validation set
(blue) for skeleton data.
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Fig. 4. Accuracy curve for “EASE-2" for training (orange) and validation
set (blue) for skeleton data.

cases the resulting accuracy for the evaluation set did not
exceed the accuracy of using the skeleton network alone.
This suggests that for this particular dataset the skeleton data
carry particularly informative features, while the additional
RGB and optical flow data do not seem to contribute im-
provements. The skeleton data dominate the results.

VI. CONCLUSIONS

We study multimodal fusion architectures for convolu-
tional neural networks. At this point, we have investigated
a late fusion approach and individual CNNs for different
modalities (video, optical flow and skeleton data) based on
the “NTU RGB+D” [41] dataset. Our experimental investi-
gations showed that modality-specific training of a CNN on
skeleton data outperforms previous state-of-the-art skeleton
based models on the standard large scale human activity
recognition dataset. Our analysis of a late fusion approach
revealed that if the modalities are only individually trained
the result appears to be dominated by the contribution of the
skeleton path. In the future, we will focus on a more effective
training of 3D CNNs and on the fusion of other modalities.
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Abstract. Deep residual networks for action recognition based on skele-
ton data can avoid the degradation problem, and a 56-layer Res-Net has
recently achieved good results. Since a much “shallower” 11-layer model
(Res-TCN) with a temporal convolution network and a simplified resid-
ual unit achieved almost competitive performance, we investigate deep
variants of Res-TCN and compare them to Res-Net architectures. Our
results outperform the other approaches in this class of residual networks.
Our investigation suggests that the resistance of deep residual networks
to degradation is not only determined by the architecture but also by
data and task properties.

Keywords: Deep residual networks - action recognition - degradation -
hyperparameters.

1 INTRODUCTION

Human activity recognition has become a prominent research area due to its
potential application in video surveillance, human computer interfaces, ambient
assisted living, human-robot-interaction, etc. More recently it has also become
important for understanding pedestrian behavior in autonomous driving [12]. As
in other areas of artificial intelligence, deep learning techniques have also gained
exceptional achievements in human activity recognition. Particularly, deep learn-
ing methods based on Recurrent Neural Networks (RNN) and Convolutional
Neural Networks (CNN) architectures have shown great performance in classifi-
cation tasks by learning discriminant features from large amounts of data.
Residual networks (e.g. Res-Net [1]) can avoid the degradation problem in
deep CNN architectures. Originally developed for image recognition tasks, they
have recently been extended to human activity recognition [7]. As to be expected
for residual architectures, good performance levels could be obtained with quite

* This work has been supported by the German Aerospace Center (DLR) with financial
means of the German Federal Ministry for Economic Affairs and Energy (BMWi),
project “OPA®L” (grant No. 50 NA 1909) and by the German Research Foundation

DFG, as part of CRC (Sonderforschungsbereich) 1320 “EASE - Everyday Activity
Science and Engineering”, University of Bremen (http://www.ease-crc.org/).
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Fig. 1: The basic residual unit in different approaches. (a) original ResNet [1];
(b) improved ResNet [7]; (¢) Res-TCN [4]

deep architectures, i.e. 56 to 110 layers [7]. Somewhat surprisingly, however, a
recent approach which combined the residual network concept with a temporal
convolutional network architecture (Res-TCN [4]) could achieve an almost com-
parable performance with a comparably “shallow” configuration of 11 layers.
And this, although the basic building unit of this approach also is consider-
ably simpler than that of the Res-Net architecture (cf. Figure 1), and offers in
addition a much easier interpretability.

However, while the ResNet approaches have been systematically investigated
with respect to the overall depth of the architecture (from 20 up to 110 layers [7])
the Res-TCN approach has only been tested in one single 11-layer variant. This
prompted us to investigate whether very deep network architectures for activ-
ity recognition can profit from using the structurally simple residual unit of
Res-TCN as basic building block, and a representation based on temporal con-
volutions. We introduce two variants of a deep learning architecture, Deep Res-
TCN-3 and Deep Res-TCN-4, with depths ranging from 11 to 152 layers, to learn
features from skeleton data and classify them into action classes.

2 RELATED WORK

Skeleton data are of particular interest for human activity recognition as they
carry high level information in the form of abstracted 3D joint positions. They
can be obtained by optical tracking of body markers, from depth videos (e.g.
Microsoft Kinect), or from RGB video data with pose estimation methods [2].
We shortly review the central ideas behind the residual based architectures
such as Res-Net [1] and Res-TCN [4]. Res-Net employs injected residual connec-
tions between processing streams to allow spatial-temporal interaction between
them. Res-TCN redesigned the original TCN [5] by factoring out the deeper
layers into additive residual terms that yielded both an interpretable hidden
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representation and model parameters. Each unit in layer L + 1 performs the
following computations in Res-TCN and Res-Net, according to equations 1 and
3 respectively. In residual based networks, the traditional convolutional layers
calculate a residual which is added to the input of the layers (see Figure 1). One
of the differences of Res-TCN and Res-Net is the direct reference to the first
convolution layer, which according to Equation 2 operates on the raw skeletal
input and the created activation map, X1, is passed on to the subsequent layers.

L
X, =X +ZWi*masc(O,Xi_1) (1)
i=2
where
X1 =W =X (2)
Xrp4+1 =W xmax(0,X1) + X (3)

X1, and X4 are input and output features of the L;, residual unit, respec-
tively. The architecture of a residual based network is shown in Figure 2.

The basic residual unit of Res-TCN [4], as compared to that of the original
ResNet [1], does not use ReLUs behind the element-wise additions @ (see Fig-
ure la,c) and can thus provide readily interpretable representations. In addition,
such units produce a direct path that enables the signal to be directly propa-
gated in a forward pass through the entire network to any unit and also the
gradients can be backwards propagated to any unit (cf. [7]). Finally, the Res-
TCN building block is considerably shallower compared to both the original [1]
and the improved ResNet [7] (cf. Figure 1).

3 METHODS

In this study we investigate different variants of deep residual architectures.
Residual networks are assumed to cope with the degradation phenomenon by
allowing for the fusion of all lower-level features of previous layers in the deeper
layers, thus enabling more complex mappings to higher level feature maps. Ap-
proaches with residual units in both image processing [1] and action recogni-
tion [7] indicate that performance can be systematically improved by deeper
architectures. For this study, we were particularly interested whether these ad-
vantages of deeper architectures can be successfully combined with the temporal
representation and the simpler and more shallow nature of the basic Res-TCN
building block [4], and how the performance of the resulting architectures com-
pares to the more sophisticated approaches used in [1] and [4] (cf. also Figure 1).

For our investigation and performance comparisons we wanted to have a
broad coverage of the depth dimension, reaching from the relative shallow depth
of 11 layers, as used in the original Res-TCN approach [4], up to a quite high
depth of 152 layers, the maximum depth used in the original Res-Net study [1].

Furthermore, we organized our investigations into three, more specific re-
search questions: First, we wanted to find out whether it is possible to use the

115



Table 1: Specification of architectures. The values in the brackets state the filter
length and number of features of each building block. The number of stacked
building blocks is given after the brackets. Down sampling is performed within
convl of each block A to D with a stride of 2. The 11-layer variant corresponds
to the original Res-TCN architecture.

(a) Deep Res-TCN-3

Layer Name Output Size 11-layer 18-layer 34-layer 60-layer 10l1-layer 152-layer
Convl 300 8,64

Block A 300 [8,64]*3  [8,64]*5  [8,64]*10  [8,64]*16 [8,64]*33  [8,64]*50
Block B 150 [8,128]*3 [8,128]*5 [8,128]*11 [8,128]*16 [8,128]*33 [8,128]*50
Block C 75 [8,256]*3 [8,256]*6 [8,256]*11 [8,256]*16 [8,256]*33 [8,256]*50

Average pool, fc-60, softmax 1

(b) Deep Res-TCN-4

Layer Name Output Size 11-layer 18-layer 34-layer 60-layer 101-layer 152-layer
Convl 300 8,64

Block A 300 [8,64]*3  [8,64]*4  [8,64]*6 [8,64]*9 [8,64]*33  [8,64]*46
Block B 150 [8,128]*3 [8,128]*4 [8,128]*8  [8,128]*12 [8,128]*33 [8,128]*46
Block C 75 [8,256]*3 [8,256]*4 [8,256]*12 [8,256]*18 [8,256]*22 [8,256]*35
Block D 38 - [8,512]*4 [8,512]*¢  [8,512]*9  [8,512]*11 [8,512]*23

Average pool, fc-60, softmax 1

simplified residual unit of Res-TCN for the design of deeper architectures, in or-
der to obtain an improved classification performance. We stick with the setting
of the original Res-TCN architecture [4], Res-TCN-3 in Table la, and varied the
depth only, in order to have an as direct as possible comparison. We did not use
the bottleneck architecture from [1], since we wanted to avoid a change in archi-
tecture along the depth dimension. Control tests of a few bottleneck variants of
the networks also indicated no advantage in classification performance.

The second research question addresses in how far the simpler structure of
the basic residual unit of the Res-TCN architecture [4] will possibly limit perfor-
mance in comparison to the more sophisticated Res-Net architectures [1,7] (cf.
also Figure 1). Since those architectures make use of a 4-block design, we also
designed a 4-block deep Res-TCN-4 architecture (see Table 1b).

The third research question addressed the improvement of the hyperparam-
eters that we found to be optimal for training (see Table 2) which are different
from the ones used in the original Res-TCN study [4]. In order to disentangle
the influence of the hyperparameters from those of the other properties varied
in this study we hence tested a further set of Res-TCN-4 networks which have
been trained with the original Res-TCN parameters as described in [4].

We used the residual units of Res-TCN ([4], Figure 1c), and repeated them
within one block multiple times. Between blocks the signal is down-sampled by
a factor of 2 by convolution with stride 2 in the first element of each block.
The convolutions are 1-dimensional with length 8 throughout the network. The
number of features varies from 64 in the early stages up to 512 in the later ones.
Figure 2 shows an example of our architecture.
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Table 2: Modified architectures of Deep Res-TCN with hyperparameter tuning.

Deep Res-TCN-3

Original Res-TCN[4] Deep Res-TCN-4

Optimizer SGD SGD
Nesterov acceleration True False
Momentum 0.9 0.01
L-1 Regulizer le-4 le-4
Learning Rate 0.01 0.01
Batch size 128 128
Dropout 0.5 0.4
Epochs 200 200
Weight Initialization Scratch Scratch

We evaluate the architectures on the 3D skeleton based human activity recog-
nition dataset NTU RGB+D (8], the currently largest set offering several modal-
ities (RGB video, depth video, IR video and skeleton data) with more than 56k
training videos across 60 action classes. The actions were performed by 40 dis-
tinct subjects, and recorded from three view points with a Microsoft Kinect v2.
The dataset provides two different evaluation criteria: Cross-Subject (CS) and
Cross-View (CV). The skeleton data used are the z,y, z coordinates for 25 joints
per person. There are maximally two people tracked during the recording.

For validation, we apply two standard testing protocols. One is Cross-Subject,
for which half of the subjects are used for training and the rest are used for test-
ing. The other is Cross-View, for which 67% of camera views are considered as
training data and the rest as test data. The training on skeleton data provided
by NTU RGB+D was performed with the Keras implementation of Res-TCN [4].
The hyperparameters of the proposed architectures are tuned according to Ta-
ble 2 with weight decay of 1e~4, stochastic gradient descent (SGD), and we adopt
the weight initialization and batch normalization [3]. We set the mini-batch size
of 128 on one GPU for all structures except for the 152-layer networks for which
we used a batch size of 96. The training is started with rate of 0.01, divided by
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Fig. 2: Deep Res-TCN-4 architecture with 34 layers.
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10 when the testing loss plateaus for more than 10 epochs. Finally, we use sparse
softmax cross entropy for loss calculation during training. Evaluation of the loss
curves of training and validation set did not show any indication for overfitting
problems .

4 RESULTS

In the following we present graphs of the classification performance in depen-
dence on network depth to answer the research questions of sect. 3. A detailed
summary of all results in form of numerical values can be found in Table 3.

(1) Can we use the simpler residual unit of Res-TCN to design deeper net-
works with improved performance? As mentioned we want to keep this compar-
ison straightforward and thus stick here to the 3-block design of the original
Res-TCN [4]. Figure 3 shows the performance curve for this 11-layer Res-TCN
and for our models with depths between 18 and 151 layers. The main result is
that the deeper variants all provide a significantly improved classification accu-
racy in comparison to the original 11-layer Res-TCN architecture. However, the
optimum occurs already at comparatively moderate depth levels of 34 and 18
layers for cross-subject and cross-view tests, respectively. But the optimum is a
shallow one, and the decrease of accuracy for greater depths is quite moderate.

Cross View
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78 855

7 85

g S w45
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:fg’c 75 g 835
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73 82
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Number of Layers Number of Layers
(a) (b)

Fig. 3: Influence of network depth on accuracy (Deep Res-TCN-3). The leftmost
data point corresponds to the original 11-layer Res-TCN architecture.

(2) How does the simpler architecture of Res-TCN compare to the more so-
phisticated Res-Net architectures [1,7]7 (cf. also Figure 1) Comparison is based
on a 4-block design (Res-TCN-4), as used in the Res-Net architectures. Classifi-
cation accuracy curves are shown in Figure 4. Although the Res-TCN-4 architec-
ture is simpler than those of the two Res-Net variants its classification accuracy
is similar or even superior. In particular it provides the best performance level
(78.7% for cross-subject and 86.8% for cross-view tests). Again, this optimum is
achieved for a relatively moderate depth of 18 layers (Res-TCN-4-18).
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Fig.4: Accuracy curves of different architectures.

(3) Influence of hyperparameters. Figure 5 shows how the classification ac-
curacy is improved by our new hyperparameters, particularly for cross-view.
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Fig. 5: Influence of hyperparameters.

Table 3 shows the accuracy results for the different deep Res-TCN variants we
tested (and for the original Res-TCN-11). A comparison of our models with other
ResNet-like architectures is shown in Table 4. The best Res-TCN-4-18 network
trained with improved parameters achieved the overall best performance, an
accuracy of 78.7% for cross-subject and of 86.8% for cross-iew.

5 DISCUSSION

In the previous section we demonstrated that the proposed deep Res-TCN ar-
chitecture clearly outperforms the original “shallow” 11-layer Res-TCN [4]. In
addition, it outperforms also alternative deep residual approaches of the Res-Net
class [1,7], using the same experimental setting and dataset.

A somewhat surprising result is a systematic pattern observed for all archi-
tectures (except the improved Res-Net [7]): a strong initial performance gain
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Table 3: Recognition accuracy. The best results are highlighted in bold.
(a) Cross-Subject accuracy

Original Parameters Improved Parameters
. Deep Deep Deep
Architectures Res-TCN Res-TCN-4 Res-TCN-3 Res-TCN-4
Original Res-TCN-11 74.3 - 75.4 -
Res-TCN-18 - 76.5 78.3 78.7
Res-TCN-34 - 75.3 78.4 77.5
Res-TCN-50 - 75.5 78.4 77.4
Res-TCN-101 - 75.4 77.0 77.0
Res-TCN-152 - 74.0 76.6 75.7

(b) Cross-View accuracy

Original Parameters Improved Parameters
. Deep Deep Deep
Architectures  Res-TON g o TCN-4 Res-TCN-3 Res-TCN-4
Original Res-TCN-11 83.2 - 83.5 —
Res-TCN-18 - 84.0 86.0 86.8
Res-TCN-34 - 83.4 86.0 86.1
Res-TCN-50 - 82.9 85.6 86.1
Res-TCN-101 - 81.6 85.6 86.0
Res-TCN-152 - 81.3 84.6 85.0

Table 4: Relationship between number of layers on ResNet and Res-TCN based
architectures and their best performance on the NTU-RGB+D dataset. The
numbers are in format cross-subject / cross-view.

Method 11-layer 18-layer 32-layer 34-layer 50-layer 56-layer
Res-TCN [4] 743 / 83.1

Original ResNet [7] 75.4 / 81.6

Improved ResNet [7] 78.2 / 85.6
Deep Res-TCN-3 -/ 86.0 78.4 /86.0 784 /-

Deep Res-TCN-4 78.7 / 86.8

due to the first step in depth, followed by a rapid leveling-off, or even a shallow
decrease, for the deeper network variants. This effect is most expressed for the
Res-TCN-4 architecture, where an increase from 11 to 18 layers yields the abso-
lute optimum performance of all architectural variants considered in this study
(78.7% and 86.8% accuracy for Cross-Subject and Cross-View, respectively, see
also Figure 4). The same pattern arises also with the Res-TCN-3 architectures
(Figure 3). The effect is not caused by the specific deep Res-TCN architectures
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since the original Res-Net architecture shows a similar pattern both for Cross-
Subject and, less expressed, for Cross-View [7] (Figure 4). However, the effect is
also not solely caused by the dataset, since it does not occur with the improved
Res-Net suggested by [7] which produces a systematic slow performance gain
with increasing network depth, with an optimum at 56 layers (Figure 4).

What can we learn from these results? First, the systematic pattern observed
for all architectures but the improved Res-Net indicates problems with degra-
dation. Although residual architectures have the basic potential to cope with
degradation, they here seem to fail at early network stages. In the case of the
Res-TCN variants this may be attributed to the simplified structure of the resid-
ual unit with only one convolutional layer, which limits the power for nonlinear
approximation. But why do we observe a similar behavior for the original Res-
Net, an architecture that has proven to be able to cope with the degradation
phenomenon for a variety of datasets [1]? The cause for this could be the for-
mat of the representation. The deep Res-TCN architectures are based on purely
temporal convolutions, the interrelations between joints being represented by the
filters. Although the order of joints has been carefully rearranged in [7], and has
proven to be essential for the performance, we assume that the 2-D convolutions
are not optimally suited for the representation. This idea is also supported by the
fact that our Res-TCN-4 network (with limited power of the basic residual unit)
can outperform the improved 56-layer Res-Net architecture by using only as few
as 18 layers. Taken together this suggests that the resistance to degradation ef-
fects is not solely determined by the specific residual structure of a network but
also by a non-trivial interaction of architecture and task/data properties.

It is worth mentioning that the influence of the hyperparameters is quite
strong compared to the other effects (Figure 5). Since the main difference is
the avoidance of momentum optimization this might indicate that this common
default choice is not optimally suited for the relatively smooth and regular loss
landscape of deep residual architectures [6], or will require additional measures
to ensure full convergence.

Among the class of models which use only skeleton data and straight-forward
deep residual network architectures the deep Res-TCN model suggested here
provides the best performance. Other recent approaches exhibit even better per-
formance levels, but these are achieved using quite specialized model structures,
e.g. by making use of additional attention modules [9], multi-modal processing
streams [11], view point adaptation [10] or other improvements e.g. [13-17]. It
has to be expected that further gains can be obtained by a combination of our
model with these more sophisticated approaches, for example by using our model
as one component in a multimodal architecture.

References

1. K. He, X. Zhang,S. Ren and J. Sun. Deep Residual Learning for Image Recognition,
IEEE Conference on Computer Vision and Pattern Recognition(CVPR) , 770778,
2016.

121



10.

11.

12.

13.

14.

15.

16.

17.

K. He, G. Gkioxari, P. Dollr and R. Girshick. Mask R-CNN, in 2017 IEEE Interna-
tional Conference on Computer Vision (ICCV), Venice, 2017, pp. 2980-2988. doi:
10.1109/ICCV.2017.322

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 , 2015.

T. S. Kim and A. Reiter. Interpretable 3d human action analysis with temporal
convolutional networks, in 2017 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW).

C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager. Temporal convolu-
tional networks for action segmentationand detection. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2017.

H. Li, Z. Xu, G. Taylor and T. Goldstein. Visualizing the Loss Landscape of Neural
Nets, in: CoRR, 2017. arXiv:1712.09913 [cs.LG]

H.Pham, L. Khoudour, A. Crouzil, P. Zegers and S. Velastin. Exploiting deep resid-
ual networks for human action recognition from skeletal data, Computer Vision and
Image Understanding (CVIU), 2018.

A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang. NTU RGB-+D: A large scale dataset
for 3D human activity analysis, in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2016.

Z. Yang, Y. Li, J. Yang and J. Luo. Action Recognition with Visual Attention on
Skeleton Images, in: CoRR, 2018. arXiv:1804.07453 [cs.CV]

P. Zhang, C. Lan, J. Xing, W. Zeng, J. Xue, and N. Zheng. View Adaptive Neu-
ral Networks for High Performance Skeleton-based Human Action Recognition,
in IEEE Transactions on Pattern Analysis and Machine Intelligence (to appear),
2019.

J. Zhu, W. Zou, L. Xu, Y. Hu, Z. Zhu, M. Chang, J. Huang, G. Huang and D Du.
Action Machine: Rethinking Action Recognition in Trimmed Videos, in: CoRR,
2019. arXiv:1812.05770 [cs.CV]

A. Rasouli and J. K. Tsotsos. Joint Attention in Driver-Pedestrian Interaction:
from Theory to Practice, in: CoRR, 2018. arXiv:1802.02522 [cs.RO]

M. Liu, L. Hong and C. Chen. Enhanced skeleton visualization for view invariant
human action recognition. Pattern Recognition 68 (2017): 346-362.

C. Li, P. Wang, S. Wang, Y. Hou and W. Li. Skeleton-based action recognition
using LSTM and CNN. 2017 IEEE International Conference on Multimedia &
Expo Workshops (ICMEW). IEEE, 2017.

C. Li, Q. Zhong, D. Xie and S. Pu. Skeleton-based action recognition with con-
volutional neural networks. 2017 IEEE International Conference on Multimedia &
Expo Workshops (ICMEW). IEEE, 2017.

Q. Ke, M. Bennamoun S. An, F. Sohel and F. Boussaid. A new representation of
skeleton sequences for 3d action recognition. Proceedings of the IEEE conference
on computer vision and pattern recognition. 2017.

S. Yan, Y. Xiong and D. Lin. Spatial temporal graph convolutional networks for
skeleton-based action recognition. Thirty-Second AAAI Conference on Artificial
Intelligence. 2018.

122



Early vs Late Fusion in Multimodal Convolutional
Neural Networks

1% Konrad Gadzicki
Cognitive Neuroinformatics
University of Bremen
Bremen, Germany
gadzicki @uni-bremen.de

Abstract—Combining machine learning in neural networks
with multimodal fusion strategies offers an interesting potential
for classification tasks but the optimum fusion strategies for many
applications have yet to be determined. Here we address this
issue in the context of human activity recognition, making use of
a state-of-the-art convolutional network architecture (Inception
I3D) and a huge dataset (NTU RGB+D). As modalities we con-
sider RGB video, optical flow, and skeleton data. We determine
whether the fusion of different modalities can provide an advan-
tage as compared to uni-modal approaches, and whether a more
complex early fusion strategy can outperform the simpler late-
fusion strategy by making use of statistical correlations between
the different modalities. Our results show a clear performance
improvement by multi-modal fusion and a substantial advantage
of an early fusion strategy.

Index Terms—Multi-layer neural network, Activity recogni-
tion, Sensor fusion

I. INTRODUCTION

The research of human activity recognition has gained
attention over the years due to its utilization in various fields.
The collaborative research center “EASE” (http://www.ease-
crc.org) has the goal to develop robots capable of perform-
ing everyday activities. Examples from humans executing
household activities like table setting, cooking etc. serve as
an important information source for determining appropriate
actions of the robot. The automated recognition of those
activities is key for the access and analysis of data in a huge
database of recorded human activities.

Deep learning had a tremendous impact on machine learning
and pattern recognition, achieving results beyond the perfor-
mance levels of classical approaches. Tasks like activity recog-
nition profit substantially from deep learning, e.g. by utilizing
the expressive power of Recurrent Neural Networks (RNN)
and Convolutional Neural Networks (CNN). These approaches
perform well on a large number of different sensory data
relevant for activity recognition, e.g. image data, video, audio
or skeleton data. Since activities are mostly recorded over
time, the convolutional units of appropriate CNNs have to
comprise the temporal dimension as well by applying some
sort of spatio-temporal convolutions.

This work was supported by DFG (German Research Foundation) as part
of Collaborative Research Center “EASE - Everyday activities Science and
Engineering” (http://www.ease-crc.org)
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Although CNNs featuring a single data source show already
impressive performance for activity recognition, the fusion of
several modalities could be a promising research direction for
a further improvements of performance. Ambiguities of single
data sources might be resolved and correlations between date
sources could be exploited by integrating different modalities,
thus improving the overall system performance.

Here we investigate the potential of multimodal fusion
strategies in the context of spatio-temporal convolutional neu-
ral networks. We compare different multimodal architectures
in relation to the unimodal variants without aiming for state-
of-art performance on the dataset.

II. RELATED WORK
A. Data for Activity Recognition

Currently there is a large number of datasets for activity
recognition available (for a review see [1]). They cover a wide
range of modalities which are suitable for this task. RGB
video data is often part of a dataset and recent approaches
have focused on this modality, often together with additional
modalities like depth maps. This combination of RGB+D
is popular due to the frequent use of Microsoft Kinetic for
recording of human activity. Since this device is also able to
extract skeleton information from the RGB+D signal, skeleton
data is often available as a third useful modality.

Every particular modality can provide different information,
with its usefulness depending on the task at hand. Video data
provide information about color, texture or shape of people and
objects as well as about the whole scene in which an activity
takes place. While this modality is very rich in information,
the variation of illumination, color etc. in a real-world RGB
channel makes it tricky to process.

Channels which are largely invariant to these variations
might provide useful data which are easier to process. Depth
maps, for instance, are rather invariant to illumination changes
which might be very helpful for segmentation or for shape
extraction. And there are further channels that can be derived
from RGB or depth data. Optical flow is usually extracted from
RGB and provides information about spatio-temporal changes
in the scene. Skeleton data can be extracted from RGB or
from depth, but can also be directly recorded with motion
capturing. The information about skeleton points is especially

123



valuable for analyzing the human part of the scene in activity
recognition.

The “NTU RGB+D” [2] which will be used in this paper, is
a large-scale dataset providing RGB, depth and skeleton data.
It offers large number of subjects and classes from different
viewpoints.

B. Activity Recognition Models

The analysis of human activities has drawn significant
attention, with special interest in action recognition from RGB
video. In the last decade the success of CNN-based approaches
in image-based classification has led to the application of
these methods to video data. Video data can be treated as
a series of 2D image, each processed with a 2D-CNN. While
this is sufficient to extract the spatial features, the temporal
dynamics need to be captured as well. [3] introduced multi-
frame optical flow as an input to a 2D-CNN together with
RGB frames. This sort of network is basically a 2D image
classification CNN which has the advantage of being pre-
trainable on Imagenet [4].

In recent years spatio-temporal 3D-CNN were introduced
for processing multiple frames directly [5]-[8]. Two stream
CNN [9] add optical flow, derived from RGB video, as a
second modality to the network. Multistage CNN [10] and
structured segment network [11] add the ability to detect
actions in untrimmed videos by generating proposals for time
slices with actions. The fusion of multiple modalities in CNNs
has been investigated by [25] and [26].

Apart from convolutional neural networks, recurrent neural
networks offer another way to process video data. Here the
temporal dynamics between individual frames are captured by
the recurrent structure of the network [12]-[14].

Skeleton data, representing the positions of joints of a
human body over time, offer rich information with regard to
human activity recognition. CNN-based approaches can treat
the x, y, z-position of joints as separate time series and process
them with a time convolutional network [15]. Another way is
to transform the joint information into a 2D structure and use
2D-CNN for processing. [16] interpret the joint positions as
2D information and color code the temporal dynamics, [17]
use one image dimension for coding the spatial structure of
joints and the other for the temporal dynamics and [18] project
the 3D positions onto four different 2D planes and encode the
joint distances in those planes in images.

As for the combination of modalities, the approaches which
work well for a certain modality, are not necessarily suitable
or working equally well in a multimodal system.

C. Multi-Sensor Fusion

The fusion of multiple data sources is well established in
literature. Bellot [19] identifies four gains which the fusion
process might achieve:

o ‘“gain in representation”: the fused representation reaches
a higher level of granularity or abstract level than the
initial data sources.

e “gain in certainty”: increase in the belief in the fused
data.

e “gain in accuracy”: the standard deviation on the data
improves. Noise and errors are decreased.

e “gain in completeness”: addition of new information
make the view on the environment more complete.

With regard to the field of activity recognition, an overview
of multi-sensor fusion can be found in [20] and [21]. Multi-
sensor fusion is used when several sensors are placed in
the environment [22], [23] or on the human body (wearable
sensors) [24].

III. MULTIMODAL FUSION
A. Multimodal Fusion Strategies

Using multimodal approaches in a machine learning context
is typically aimed at an improvement of the overall system
performance with regard to recognition power or robustness.
The idea is that individual data sources can provide different
kinds of information which might resolve ambiguity, improve
the overall quality of noisy data, or enable the exploitation of
correlations.

One of the challenges of multimodal machine learning [27]
lies in the methods for the fusion of the different modalities.
The respective approaches can be broadly categorized as early
and late fusion [28], depending on the position of the fusion
within the processing chain. Hybrid fusion approaches try to
combine the properties of the two basic methods [28].

Late fusion [29] is the simplest and most commonly used
fusion method. It merges data after a separate full processing
in different unimodal streams. The individual modalities can
be processed by powerful targeted approaches, tailored to
the specific properties of the particular modality. After a
full chain of unimodal processing, typically after predicting
labels in a recognition task, the results are merged, in the
most simple case by summation or averaging. Late fusion
has a major drawback which is the very limited potential
for the exploitation of cross correlations between the different
unimodal data.

Early fusion [29] is more powerful since it merges data
sources in the beginning of the processing. Raw data can be
fused directly without any pre-processing, but usually certain
features are initially extracted. These basically unimodal fea-
tures are then fused by concatenating the individual data into
a joint representation. The unified representation has to make
sure that the data is properly aligned, thus being suitable for
further joint processing. If the data is properly aligned, cross-
correlations between data items may be exploited, thereby
providing an opportunity to increase the performance of the
system. [25] argue that those fused low-level features might
be irrelevant for the task, thus decreasing the fusion power.

Between late and early fusion as the extremes, it is also
possible to use a halfway fusion [25] or middle fusion [26].
Here the fusion point somewhere in the middle of the network.

In this paper, we want to investigate whether the fusion
of different modalities can provide an advantage as compared
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to uni-modal approaches, and whether a more complex early
fusion strategy can outperform the standard late-fusion strategy
by making use of statistical correlations between the different
modalities. We address this issue in the context of human
activity recognition. To ensure a meaningful comparison we
avoid special solutions but use one state-of-the-art convolu-
tional network architecture (Inception I3D) for all different
settings. Furthermore, we perform the tests on a sufficiently
large and general dataset (NTU RGB+D). As modalities we
consider RGB video, optical flow, and skeleton data.

B. Multimodal Fusion for Convolutional Neural Networks

Convolutional neural networks have reached remarkable
success in a variety of applications. Combining multimodal
fusion and CNNs thus appears to be a promising direction
for future research. In particular, the possible fusion methods
described above can be applied to CNNs.

In the case of early fusion, one can combine raw data or
early features. Since raw data from different data sources are
rarely spatio-temporally aligned due to different resolutions
or sampling frequencies, they require a certain amount of
pre-processing before being concatenated for processing by a
CNN. If one moves one step further in the network and starts
fusion at an early features level, the requirement for spatio-
temporal alignment remains, but there are several ways how to
extract features. The most simple case is to use convolutional
units for feature extraction and train them from scratch, or
pre-train on a different dataset which offers the same modality.
One could also bootstrap those units with weights learned on a
similar data source. For instance one can train on Imagenet [4]
and initialize a CNN with these pretrained weights. If the
dimensionality changes to 3D as with video data, 2D weights
can still be used for bootstrapping [9]. A last possibility is
to use classical approaches for features extraction, e.g. a filter
bank of parameterized filters.

For late fusion several unimodal networks are used as the
basis for the fused architecture. The individual networks can be
heterogeneous, fitting only the modality they are designed for.
The actual fusion is then trivial requiring only the merging of
the individual results of each network, i.e. the predicted labels
in a recognition task. In order to achieve the fusion, the dense
layers which usually form the output layer of a network need
to be merged by summing or averaging.

The fusion of raw data resp. first features in the early fusion
case and the fusion of final predictions in the late fusion case
are the extreme variants. Apart from these two there are many
more potential fusion points within a deep CNN. With increas-
ing number of layers, the complexity of individual features
typically rises. Fusing such correlated complex features for
multiple modalities might result in increased performance.

IV. METHODS
A. Dataset

The reasons for using the “NTU RGB+D” dataset [2] are the
size of the dataset (over 56k samples, ca. 40k for training and
16k for validation) and the different modalities (RGB video,

depth video, IR video and skeleton data) it offers. There are
60 classes, 40 subjects performing the activities and three
different view points. The data have been recorded with a
Microsoft Kinect v2. Figure 1 shows sample frames from the
dataset.

Fig. 1: Sample frames of the NTU RGB+D dataset [2].

B. Modeling

For our investigation we have used early and late multi-
modal convolutional neural networks as well as the respective
unimodal CNNs. Our basic architecture uses an established
architecture from literature, “Inception-vl I3D” [9]. This ar-
chitecture uses “Inception” modules (see Figure 2) which
introduce parallel pathways for processing of a given input,
concatenating the results of each pathway as an output of the
module. These “Inception” blocks are repeated several times
with MaxPooling operations and down-sampling in between
at certain points as shown in Figure 3.

We use RGB video, optical flow based on the RGB and
skeleton data in our work. The CNNs have been implemented
in TensorFlow [30].

The structure of the early and late fusion systems are
shown in Fig. 4. The early fusion variant does not fuse
the raw data, but the one of the first convolutional features.
Architectures like “Inception I3D” are designed to have a set
of convolutional layers before processing the data with a series
of “inception modules” (see Figure 2) respectively. The first
layers, leading to the first “inception” block, are called the
stem of the network. We apply the term early fusion, if the
fusion takes place within the stem.
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Fig. 2: Structure of an Inception-v1 block (adapted from [9])

The early and mid fusion are performed by concatenating
the outputs of the partial networks for the given modalities. For
instance, the early fusion of the first convolutional layers (stem
layers 1') concatenates the outputs for these layers which
have been calculated for each modality, e.g. RGB and Optical
Flow, separately. Afterwards the resulting tensor is fed into
the remaining network without changing the architecture any
further.

In the late fusion variant, the individual modalities are
process on their own up to the dense layer at the top which
are summed in the end (see Figure 4b).

The fusion of RGB video with Optical Flow is straight
forward due to the same dimensionality of these modalities.
The processing of skeleton data within the early fusion archi-
tecture would require a transformation of the input data, i.e. we
transform the 1D skeleton data for a particular time step to 2D.
Therefore, we tested the late fusion variant only with skeleton
data which does not required any further transformation of
the data. Here we can use an existing an existing CNN, build
for 1D data, and sum its results with the outputs of the other
branch. We use “Res-TCN” [15] for the late fusion variants.
It is a residual network with temporal convolutions, thus the
convolutions are 1D in nature.

The loss function is sparse softmax cross entropy. We use a
Momentum optimizer with 0.9 momentum and a learning rate
of 0.001

Based on the RGB videos, optical flow has been computed
with “FlowNet2” [31]. The original RGB videos were down-
scaled to 256x256 and randomly cropped to 224x224 pixels
around the center. The optical flow data has been processed
in the same manner with the cropping positions being aligned

For “Inception I3D”: after *conv3d_la_7x7’ in the implementation from
https://github.com/deepmind/kinetics-i3d.

Inc. E Output E
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1x3x3
MaxPool ¢
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3x3x3
MaxPool f
stride2
2XTX7
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2x2x2
l MaxPool
stride2
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E Input ' Inc.

snnnnnmna”

Fig. 3: Layout of
from [9])

the Inception-vl I3D CNN (adapted

to the RGB video. The time slices were set to 10 seconds and
looped if the data was shorter. The FPS was 25. The skeleton
data consists of the x,y,z coordinates for 25 joints per person
and was computed with the Kinect v2. There were maximally
two people tracked during the recording.

V. RESULTS

We have used the “NTU RGB+D” dataset with the cross-
subject split provided by [15] which provides 40320 samples
for training. The unimodal and multimodal variants of the
network are based on the “Inception I3D” architecture. The
results involving skeleton data (unimodal and multimodal late
fusion) were obtained with “Res-TCN” [15] for the skeleton
part. Figure 5 shows an exemplary plot of the training of a
multimodal network. There are no signs indicative of over-
training.
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performance of 86.7% is obtained with a network which makes
use of an early fusion architecture which integrates RGB and
optical flow.

@ )

Fig. 4: CNN with (a) early fusion and (b) late fusion. The
modalities shown here are RGB images and Optical Flow. For
the early fusion the action label is directly output by the logits
layer of the fused network. For late fusion the outputs of the
logits layers of the individual CNNs for each modality are
summed.

@ )

Fig. 5: Accuracy (a) and loss (b) for early fusion with RGB
and optical flow with training set (orange) and validation set
(blue).

Table I shows a summary of the results in terms of recog-
nition performance. We measure the recognition accuracy by
number of correct predictions divided by number of samples.
For the unimodal versions of the CNNs classification perfor-
mance ranges from 66.4% to 78.6%. Optical flow as a single
modality provides a relatively poor performance of 66.4%. The
other two modalities enable a significantly better recognition,
with the best result of 78.6% being obtained on basis of the
skeleton data.

The multimodal versions all show an improved performance
in comparison to their unimodal counterparts. Somewhat sur-
prising, the smallest improvement to a level of 82.3% is
obtained by a late fusion of the RGB channel with the uni-
modally best performing skeleton channel. Nevertheless, the
multimodal performance is superior to that of the individual
channels alone (76.8% and 78.6%). The best multimodal

3D ConvNet 3D ConvNet 3D ConvNet | | TABLE I: Multimodal fusion results of “Kinetics 13D” [9]
on NTU Dataset [2] for all results but skeleton data (marked
with *) which used “Res-TCN” [15].
layers layers Trained
Fusion L Modalities Accuracy
ayers
Unimodal RGB video all layers RGB 76.8%
layers layers Optical Flow  all layers  Optical Flow 66.4%
*Skeleton all layers  Skeleton 78.6%
-~ ” 7 ]
n Multimodal ~ Early Fusion  all layers ~ RGB, Op. Flow 86.7%
— r — Late Fusion all layers  RGB, Op. Flow 82.9%
I.' I.' I.' - Jﬂ *Late Fusion last layer ~RGB, Skeleton 82.3%
Optical Optical
| |
mages Flow mages Flow

VI. DISCUSSION

In this paper our investigation was focused on the question
whether the fusion of information from several data sources is
helpful for the task of human activity recognition by convolu-
tional neural networks. Our results show that any sort of fusion
will improve the performance. This is valid irrespective of
whether the fusion is performed early or late, and irrespective
of which modalities are combined.

On a detailed level, our investigations show a clear superior-
ity of an early fusion strategy over a late combination (86.7%
for early as opposed to 82.3% and 82.9% for late). This lends
support to the hypothesis that a multimodal convolutional
network architecture in which the information from different
modalities can be combined and recombined across processing
stages is able to exploit the multivariate correlational structure
of the data sources.

It is interesting to note that in our setting the specific modal-
ities used for the combination seem to have less relevance
than the fact that a combination is used at all. Although
the unimodal skeleton channel as such yields a much higher
performance than unimodal optic flow (78.6% vs. 66.4%), a
late fusion of this skeleton channel with the RGB channel
cannot provide a better performance than the fusion of the
seemingly inferior optic flow channel with the RGB channel
(82.3% vs. 82.9%).

Future work can explore several directions for multimodal
information fusion with convolutional networks. One direction
is the full integration of skeleton data into an early fusion
architecture. For this we have to bring the image raster data
and the skeleton data into a format suitable for combina-
tion. Another direction is to investigate halfway fusion. [25]
achieved best results by fusing in the middle of the network.
On the other hand [26] reported worse performance for middle
fusion under certain conditions.

A further direction is to consider hybrid approaches which
try to combine the advantages of both early and late fusion
methods. For example one could combine highly specialized
processing architectures for unimodal data streams with more
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general architectures for early fusion, e.g. for pairwise com-
bination of modalities [32]. These pathways can finally be
merged by late fusion, allowing to exploit potential cross-
correlations residing in the different data streams, and at the
same time use sophisticated models for each data stream.

In conclusion, our results yield further support for the
general idea that fusion of and within convolutional network
architectures could be a promising research direction for
human activity recognition. The greatest potential, in our
view, should be sought in an early integration of a variety
of information sources.
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Abstract— The Everyday Activities Science and Engineering
(EASE) Collaborative Research Consortium’s mission to en-
hance the performance of cognition-enabled robots establishes
its foundation in the EASE Human Activities Data Analysis
Pipeline. Through collection of diverse human activity infor-
mation resources, enrichment with contextually relevant anno-
tations, and subsequent multimodal analysis of the combined
data sources, the pipeline described will provide a rich resource
for robot planning researchers, through incorporation in the
OpenEASE cloud platform.

I. INTRODUCTION

Currently, robots have displayed remarkable feats that
would suggest they will soon be able to take over many of
our more onerous daily activities (cleaning, cooking, feeding
the dog etc), leaving us free to focus our energies elsewhere
(eating, petting the dog etc). However, the underlying truth
remains — these robots display such sophisticated abilities
due to their creators’ contextually precise, expertly crafted
planning algorithms. For this everyday robotic revolution to
occur, these agents will need to be able to react to vague
instructions and changing context, in a manner that more
closely adheres to human behaviors and abilities. So, how
may we identify and, more importantly, collect and describe
the missing pieces of this puzzle that would enable cognitive
robots to perform actions that approach the aplomb with
which humans are able to interact everyday, through habit,
common sense, intuition, and problem solving approaches
seemingly effortlessly developed throughout their lifetimes?

In this paper we present a novel data processing pipeline
for human activity recognition (HAR). To our knowledge,
our pipeline is the first to combine multimodal data collec-
tion, hierarchical and semantic annotations, and ontological
reasoning to enhance cognitive robots with human-like rea-
soning capabilities derived from everyday human activities.
The collaborative research center EASE (“Everyday Sci-
ence and Engineering,” http://ease-crc.org) has facilitation of
robotic mastery of everyday activities as its unifying mission.
The subprojects concerned with human activities data collec-
tion have the goal of providing so-called narrative-enabled
episodic memories (NEEMs). These data structures store
recorded observations, experiences and activities compiled
as a single coherent item. Another goal is the derivation of
pragmatic everyday activity manifolds (PEAMs), which will
form the basis for robot agent enhancement by enabling real-
time interaction similar to how humans function.

LCognitive Systems Lab, University of Bremen, Germany

2Cognitive Neuroinformatics, University of Bremen, Germany

3Neuropsychology and Behavioral Neurobiology, University of Bremen,
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Fig. 1: The EASE human activities data analysis pipeline

We start with recording of human activities in a kitchen
setting, preprocessing, and (optionally) supplementing with
outside data sources, before storing data in the openEASE
robotics knowledge base platform. Annotations, based on the
EASE-Ontology, are designed for cognitive robots. The auto-
matic annotators use different modalities and approaches, e.g.
multimodal activity recognition, speech recognition or object
tracking, thus complementing each other. Data produced
from further processing through manual and automatic anno-
tation, and subsequent analyses through a variety of machine
learning techniques, can then be queried in openEASE.
Based on performance in robotic activity scenarios, the
annotation schema can then be improved further. The results—
raw and processed multimodal data recordings, together with
annotations and data derived from analyses—are stored in
openEASE, a framework for knowledge representation and
reasoning, as shown in figure 1.

The NEEMs derived from research projects in EASE sub-
project area H (Human Activities Data Collection) provide
unique and critical contextual background for robots, based
on human activities, perceptions, and feedback. Analyses
of biosignals derived from brain, muscle, or skin signals
may provide insight into diverse aspects of human behavior
required for humans to masterfully perform everyday activ-
ities with little effort or attention. Through the integration
of analyses from a wide array of data sources, through a
multitude of complementary methods, we endeavor to build
an extensive, contextually dense reserve of activity experi-
ence and problem solving approach methods derived from
human behaviors to transfer effectively to robot systems. The
following examples are among those being employed within
the EASE-CRC at this time.

Brain activity measurements allow evaluation of atten-
tional focus while performing tasks, adaptation to ambigu-
ous or conflicting situations or physical obstacles, decision
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making processes, and how motor imagery when viewing
performance of activities compares with in-situ motor exe-
cution. Skin and muscle activity sensors can indicate overall
mental state, and information about manual manipulation
interactions with objects, such as the force used. Full body
motion capture provides motion in an environment and object
interactions. Assessment of small scale hand movements
(including e.g. forces, velocities, trajectories, etc.) using
the PHANToM haptic interface Scene video from many
perspectives allows tracking of objects and the order of inter-
actions, insight into efficient movement within a space while
performing tasks. First person video provides understanding
of scene aspects people may focus on while planning and
executing tasks. Important information for a robot might
include attention (internal vs external) and visual search
strategies for objects or positions based on contexts such
as meal type, formality, or number of diners. Microphones
record scene audio, speech and non-speech vocalizations.
Through audio recordings of what a person thinks-aloud
while they perform tasks, we gain a rich description of
the scene as the performer sees it, obstacles encountered,
reasoning and problem solving approaches, frustration or
enjoyment, and the task process as a whole.

openEASE [1] is an online knowledge representation and
reasoning framework for robots. It provides the infrastructure
to store and access nonhomogeneous experience data from
robots and humans, and comes with software tools which
enable researchers to analyze and visualize the data.

EASE subprojects record human activity datasets (HAD)
in a range of scenarios. Data collection efforts focus on
contexts involving Activities of Daily Living” (ADLs) in
the kitchen, such as setting and clearing the table or doing
dishes. From these experiments, we are producing the multi-
modal EASE Table Setting Dataset (EASE-TSD), a dataset
featuring brain measurements using functional magnetic res-
onance imaging (fMRI) and electroencephalography (EEG)
during table setting related tasks, and the EASE Manip-
ulation Adaptivity Dataset (EASE-MAD), that focuses on
sensorimotor regulation during individual (atomic) actions
or short sequences, in detail. These experimental contexts
and data recordings are described in later sections.

Seamless integration of these datasets, annotations, and
derived models into the openEASE framework will provide
the solid foundation for robotic researchers to expedite devel-
opment of robotic agents that are more robust to unexpected
variations in task requirements and context, taking human
behaviour as inspiration.

II. RELATED WORK
A. Data for Activity Recognition

Activity recognition can be performed on a wide variety of
features and a large number of datasets have been provided
(for a review see [2]).

Recent approaches in activity recognition often work on
RGB-D data. These consist of RGB video and accompanying
depth maps and provide two useful modalities for human
activity recognition. Skeleton data can be recorded with

motion capturing or extracted from RGB-D data as in the
case of a Kinect. Other modalities, e.g. optical flow, can be
extracted from RGB data as well.

There are several other datasets featuring kitchen related
activities. “EPIC-Kitchens” [3] features head-mounted cam-
era video taken during kitchen activities performed by 32
participants in their homes, annotated with 125 verb classes
and 352 noun classes in varied languages. “50 Salads” [4]
uses 3rd-person camera (including RGB-D cameras) and
accelerometer-mounted objects to record meal preparation
sequences. “MPII Cooking Activities Dataset” [S] uses video
recordings of participants performing 65 kitchen activities
for pose-based activity recognition. The “TUM Kitchen
Dataset” [6] features video, full-body motion capture, RFID
tag readings and magnetic sensor data taken during activities,
processed with manual motion tracker labels and automatic
semantic segmentation.

B. Activity Recognition Models with Neural Networks

The specific properties of the various modalities have led
to different processing strategies. For instance, the RGB
channel can be processed with a spatio-temporal convolu-
tional neural network (CNN) [7], [8], [9], [10], either on its
own or together with derived optical flow [11], [12] through a
two-stream CNN or as a multistage CNN [13], [14]. Another
approach is to use recurrent neural networks (RNNs) for
processing of RGB data [15], [16], [17], [18], [19]. The depth
channel can be similarly processed with a CNN [20], [21]
or with a combination of CNN and RNN [22]. With regard
to skeleton data, processing with CNN can be enabled by
interpreting joint positions as image data [23], [24], [25],
[26]. There also exist RNN-based approaches [27], [28], [29],
a Deep Boltzmann Machine (DBM) approach [30] and a
Hidden Markov Model (HMM) with a deep network as a
state probability predictor [31].

C. Semantic, Multimodal Activity Recognition

In [32], semantic hierarchically structured actions are
recognized within the kitchen-related context of pancake
making, sandwich making, and setting the table in order
to transfer task-related skills to humanoid robots. Their
ontologically-associated knowledge representations of the
observed behavioral data, recorded as video, of people during
interactions with objects during such tasks is defined at
varying levels of abstraction. Semantic activity recognition
of kitchen ADLs (such as making pasta or taking medicine)
in the form of multimodal sensor data [33] has also been per-
formed, supported by a Semantic Sensor Network ontology
for worn and environment sensor information.

III. DATA RECORDING
A. Human Activities in a Pseudo-natural Setting

The EASE Table Setting Dataset (EASE-TSD) is com-
posed of multimodal biosignal data recorded during ex-
perimental observations of various table setting tasks per-
formed by participants in our Biosignals Acquisition Space
(EASE-BASE), as described in [34]. All signals are recorded
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synchronously using Lab Streaming Layer (LSL) [35].
The recorded sensor modalities include: full-body motion-
tracking, audio (from a scene mic and head-worn mic for
speech), video from 7 mounted webcams and one head-
mounted eyetracker, and biosignals from muscle and brain
activity) from participants performing everyday activities
while describing their task through use of think-aloud pro-
tocols during the task (concurrently) and after the task is
completed (retrospectively) [36], as shown in Figure 2a-
b. For the EASE-TSD experimental recordings, 70 sessions
have been recorded, composed of six or more trials each,
totaling 470 concurrent and 405 retrospective think-aloud
trial variants. Over 37,400 transcribed words of the think-
aloud speech during these trials have been created, with
think-aloud encoding annotations underway. Over 16,600
action annotation labels, broken down into between 2 and
12 category sets, for these trials have been performed at
varying levels of granularity. Annotations and transcriptions
on numerous levels continue to be created as analyses
progress. Once the planned recordings with 100 participants
are finished and preliminary analysis is completed, the data
set will be made available to the public.

Fig. 2: Experimental data recording of participants a) per-
forming concurrent think-aloud trial tasks, b) performing ret-
rospective think-aloud trial tasks c) performing tasks during
fMRI, and d) performing tasks during stationary EEG.

B. Human Activities in a Controlled Setting

Table setting videos recorded from the first-person per-
spective are used in neuroimaging studies, using a 3-Tesla
MRI-Scanner as well as high-density multi-channel EEG sys-
tem, situated in an electromagnetically shielded room. Study
participants are tasked with actively imagining themselves
acting out the presented situations, thus employing motor
imagery [37], while their brain activity is measured.

While fMRI offers unrivaled spatial resolution and the
ability to accurately measure whole brain volumes, the
residential EEG-System provides high temporal resolution
and, in comparison to mobile solutions, offers the advantage
of less data contamination caused body movement and elec-
tromagnetic emission sources such as cameras, movement
detection systems and so forth. Due to its high number
of acquisition channels, it also allows for detailed source
localization of brain activity.

C. Adaptivity of Human Activities

The Manipulation Adaptivity Dataset (EASE-MAD) in-
cludes data from different sources that were assessed in
controlled VR settings. This approach allows for deeper
insights into the sensorimotor loop (SML), which is a model
concept for describing the integration of sensory and motor
systems that is the basis of continuous modification of
motor commands in response to sensory inputs. Whereas
basic sensorimotor loops have been successfully modeled
in several variants using control engineering approaches
[38], they cannot explain the effortless precision and vast
flexibility found in human voluntary actions.

Fig. 3: Data recording during adaptivity testing a) using the
PHANToOM haptic interface that allows for force rendering
to interact with objects and tools in VR, and b) using optical
tracking to control a full hand model in VR. The head
mounted display is equipped with an eyetracker.

It should be noted, however, that observation of real-world
everyday activities only allows us to capture the sensorimotor
loop from the outside (i.e. analyze its outer PEAMs without
being able to directly address its inner laws. We seek more di-
rect access by closing the sensorimotor loop in virtual reality
(VR), in which we are, unlike in real world experiments, in
full control of the individual parameters of the environment
and actions. Thus, our main research paradigm will be to
intervene in the sensorimotor loop at different points of the
control chain [39], [40]). VR as experimental setting enables
systematic intervention beyond the physical limitations of
real world studies. This allows analysis of how cognitive
systems adjust to changing and ambiguous environmental
conditions and a systematic modeling of both the inner and
outer PEAMs of everyday activities.

Figure 3 shows experimental setups to record multimodal
data including e.g. grasping trajectories, hand pose and finger
positions during an action, or applied forces (assessed with
an PHANToM haptic interface (e.g. [41], [42]). For a detailed
description of data acquisition methods for the EASE-MAD
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Dataset and the underlying approach to investigate human
sensorimotor adaptivity see [43], [44], [45].

IV. DATA ANNOTATION
A. Annotation Schema and Ontology Integration

Annotation and transcription schema developed for the
EASE-TSD to describe aspects of everyday activities per-
tinent to robotic planning algorithm improvement, and are
therefore aligned to the EASE Ontology, are used to annotate
video and transcribe audio from speech recorded during
the EASE-TSD trials. The annotation schema for video-
based recordings are hierarchically-structured semantic de-
scriptions of events at increasingly fine-grained levels of
detail. The highest level is the task phase (planning, object
retrieval, etc.). Below that are specific recurring action types
(picking up objects, searching for places to set them on
the table). Actions are further broken down into motions
(picking = reach, grasp, lift, retract arm) for each hand or
other differentiating criteria. When multiple actions occur
simultaneously, multiple annotation tiers are required.

B. Annotation Process

Annotation of various modalities is performed in accor-
dance with the requirements for each type of data, first
manually then through automated processing. For the EASE-
TSD, the annotation and transcription processes are primarily
performed in ELAN, as seen in Figure 4. For each trial,
annotation or transcription is performed by one person, then
checked by a second. As more data is collected and anno-
tated, additional annotations will continually be performed
by additional annotators on previously annotated data, then
followed by inter-rater reliability scoring.
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Fig. 4: ELAN is used to create transcriptions and annotations
from audiovisual and biosignal data.

Video from multiple angles is used to label time segments
where a person is performing specific actions. Frames from

these videos are used to obtain information about the number,
layout, and positioning of objects within the scene.
Transcription of speech is performed for both concurrent
and retrospective think-aloud protocols, with the final goal of
transcription by at least two transcribers. These think aloud
trials are then coded based on an utterance level schema,
to describe the types of thought processes and topics each
participant thought relevant to the task at hand at the time.

V. ANALYSIS
A. Human Activity Recognition with Multimodal CNNs

Within our pipeline, we would like to automatically anno-
tate our data. For annotation of video, we used a multimodal
fusion approach based on CNNs.

Multimodal fusion is a popular approach to increase the
performance of a machine learning system by using several
data jointly. It comes in different flavors, with early, late
and hybrid fusion being the primary distinctive types [46],
with the main difference being where in the processing
chain the fusion takes place. All those different types come
with different advantages and challenges. The most simple
fusion is probably late fusion [47]. Here each modality is
processed separately and results are fused afterwards. It
allows for maximum flexibility in choosing the processing
method for each modality, so that one could use sophisticated
unimodal systems (e.g. classifiers) and combine their outputs
by i.e. summation, averaging or majority vote. It lacks the
potential to exploit possible cross-correlations which may
exist between the different data. Early fusion [47] offers
a way to exploit those. Here, either raw data or data pro-
duced by feature extraction are fused in the beginning of
the processing, in the most simple case by concatenation.
Afterward the combined data are processed together. This
approach requires that the input data are aligned, which
might not be trivial when one has to deal with different
dimensionality, sampling rate etc. Furthermore there is no
choice of specialized approaches for separate modalities; the
chosen approach has to fit the joint data.

We have developed a system which allows for the fusion
at arbitrary layers. We define a splitting point within the
network, up to which the different modalities are processed
separately. Afterwards the merged layers are processed by
the remaining network. The underlying architecture of our
CNN is a “Kinetics 13D” [12] which uses “Inception 3D”
units for spatio-temporal processing.

We have used an early fusion CNN approach for this work
since in [48] we could show that for activity recognition early
fusion performs better than late fusion. For early fusion the
individual modalities are processed by the first convolutional
layer separately. Its results are fused by concatenation for
further processing. Figure 5 shows our architecture for early
fusion. Apart from the fusion step, it is a standard “Kinetics
13D” implementation in TensorFlow [49] with sparse softmax
cross entropy for loss calculation during training.

Based on the RGB videos, optical flow has been computed
with “FlowNet2” [50]. The original full HD RGB videos
were rescaled and cropped to 224x224 pixels, the same has
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Fig. 5: Early fusion of multiple modalities in a CNN. The
modalities are processed up to a specific point in individual
paths, then fused by concatenation for further processing.

been done with the optical flow videos based on the RGB
videos. See [48] for details of the multimodal network.

The EASE-TSD videos are typically several minutes long.
To process them, the data has been chunked into slices during
pre-processing. For each slice, we extract the associated
ground truth labels which are present during the time slice.
Since there can be more than one active label in the time
span of a time slice, we have enabled our system to produce
multi-label outputs as well as single labels. The multi-label
training uses binary cross-entropy as the loss function while
the single label variant uses categorical cross-entropy.

Depending on the granularity of the activities within the
hierarchy, different time slices might be most useful. For low
level actions like reach or pick, a brief time window of
250ms might be sufficient, while a higher level composed
action like pick & place might not be properly recog-
nized, requiring a longer slice of up to 2s.

B. Speech Processing

Alongside the human-data table setting recordings, verbal
reports of the performed actions and thought processes are
recorded. As soon as a new speech recording is present,
human transcribers are assigned to a transcription process,
which is specified by explicit transcription rules. Automatic
speech recognition with pretrained Kaldi acoustic models
trained on the GlobalPhone corpus together with a language
model enhanced by the previous transcripts is employed
to aid the transcription process. A custom ELAN plugin
generates a transcript with fine grained segments.

C. Multimodal Biosignal Action Recognition

The analysis of fMRI-data is based on different method-
ological approaches. Statistical models such as the General
Linear Model (GLM) and Independent Component Analysis
(ICA) allow contrastive analysis of differences in spatiotem-
poral patterns of brain activity related to annotated semantic
episodes within a perceived point in time during video pre-
sentation (e.g. pick up, place, carry), thus leading to detection
of distinct neuronal networks correlating with ontological
categories. In particular, focus will be on the analysis of
the level of neuronal network complexity during planning

and execution of complex everyday activities. NEEMs and
PEAMs generated from these categorized episodes of brain
activity will then be contributed to openEASE.

Building on this knowledge of brain areas that are closely
correlated in their activity to ontological categories, further
research will also aim at developing algorithms that predict
stimuli and semantic episodes on different levels of complex-
ity. Thus, a semi-automatic scene recognition approach will
be developed which can feed information into the planned
process of automatic activity recognition and its annotation.

Furthermore, the combined use of multi-channel EEG and
fMRI allows for a detailed examination of spatiotemporal
characteristics of event-related brain activity [46] by using
the spatial activation patterns derived from the analysis of
the fMRI-data as seed regions for fMRI-constrained source
analyses of EEG data [47]. EEG data will be first examined
via Fourier analyses (FFT) and band-pass filtered according
to oscillatory specificities of ontologically different time
periods identified by topographical signal space analyses.
Source analyses techniques will then be applied to determine
characteristics of the spatial distribution and the spatiotem-
poral complexity of different periods of table setting action.

For EASE-TSD biosignal-based action recognition, we
work toward a model to decode arm movements involved in
object manipulation during typical table setting tasks from
brain and muscle activity signals, captured by mobile elec-
troencephalography (EEG) and electromyography (EMG)
sensors. A subset of 50 EASE-TSD trials performed by 15
participants, manually annotated at the lowest level of arm
motion, were used as the basis for multi-class classification
using a convolutional and long-short term memory (CLSTM)
model on spatially and temporally extracted features de-
rived from EEG and EMG data. This subset of data was
recorded using mobile EEG using 16 channels on the scalp
as well as 4 EMG sensors each placed on the forearms.
After undergoing channel selection, preprocessing, and then
statistical and spatiotemporal feature extraction, this became
the basis for classification of pick and place activities. For
this experimental scenario from the EASE-TSD, we used
recordings from experiments performed by 15 right handed
participants, 8 male, with age ranging from 20 to 30 as
described in [51].

At the lowest level, data from sensors placed at four
positions on each arm (e.g., on muscles controlling hand
activity of the right forearm) and scalp (e.g., motor regions
on the left hemisphere) is used to classify hand movements.
EEG data is further filtered to the frequency bands typically
corresponding to motor imagery or motor execution—the al-
pha and beta bands from 8-12 Hz and 12-30 Hz, respectively.

Initially, manually labeled segments such as ‘reach’,
‘grasp’, ‘release’, and ‘retract’ were used for leave-one-out
session-independent classification in a supervised manner.
To classify these actions using EEG and EMG data, we
use a combined CNN/LSTM approach as described in [51].
This analysis will provide the basis for additional custom
ELAN recognizer plugin development, to generate activity
annotations based on multimodal biosignals.
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Monitor

Fig. 6: Transfer of human data to robot control. (A) Data
assessment using the PHANToM haptic interface is (B)
combined with VR presentation, to (C) control a robot.

VI. ITERATIVE EXECUTION AND IMPROVEMENT
THROUGH INTEGRATION WITH ELAN AND OPENEASE

The collection of data ultimately serves the purpose of
improving the performance of robot systems and enabling
them to execute certain actions within the given context
and environment. To make the collected data available to
the openEASE robotics platform, the detected activities and
objects must be translated into a format known to the robot—
high-level action plans, such as move to position Z
or place object X on surface Y.

As depicted in figure 6, a pilot demonstration has shown
that human data from the EASE-MAD can be successfully
transferred to robot actions. In this use case, the task was
to place a delicate object, such as a fragile wine glass, on a
table. The data were assessed in VR using the PHANToM
haptic device in order to present the subjects with realistically
rendered forces during placing actions along with the visual
sensory feedback. The idea was to transfer the skill of a
fast movement with force control to the robot. The resulting
end effector variables were suitable to enable the robot to
perform the action in an appropriate fashion, i.e. in a real
world application it would have been able to lift and to place
the glass without breaking it. This approach only comprises
a limited range of variables for a short sequence of actions.
More complex plans, even though rather abstract in nature,
can be executed by the CRAM framework [52].

VII. RESULTS
A. Human Activity Recognition with Multimodal CNNs

We could show that for activity recognition an early fusion
approach is better suited than the classic late fusion [48]. For
the evaluation in this work, we have used an early fusion
architecture with RGB video and optical flow as modalities.
We have evaluated the performance on a cross-subject split
of the EASE Table Setting Dataset where one recording
session (session 17) featuring a specific subject was used
as the validation set while seven other sessions featuring
other subjects were used as training set. The time slice
was set to 0.53s (16 frames with 30 fps) for both training

and evaluation. With this setting there 29872 data items
for training and 8107 for validation. We have achieved an
accuracy of 87.8% for the multi-label task and 80.6% for
the single-label task on the validation set. Figure 7 shows a
plot from one of the training sessions.
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Fig. 7: (a) Accuracy and (b) loss plot for training (blue) and
validation (orange) set.

B. Multimodal Biosignal Action Recognition

Brain activity of 30 participants was measured in an
EEG-study, consisting of four 1st-person Videos. The videos
were annotated according to EASE-ontology, resulting in 312
distinct episodes of various categories and complexity levels.
An fMRI-study with 30 participants consisting of ten Ist-
person videos was recently finished, with an overall number
of 1461 annotated episodes. Preliminary ICA results from
this study point out brain areas that discriminate between
object interaction events and episodes of no object interaction
during the presentation of the videos, as illustrated exemplar-
ily in figure 8. These will later serve as seed regions for the
analysis of EEG data.

For the person-independent multi-class motion classifica-
tion of EASE-TSD trials using a convolutional and long-short
term memory (CLSTM) model on EEG and EMG data, the
results indicate that EMG features alone provided a better
basis for classification at this level of activity. While the low
level segments were too brief to extract meaningful informa-
tion from the EEG sensor data, classification performance
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Fig. 8: Brain areas susceptible to stimuli of object interaction
events (red) and events with no discernible interaction (blue)
during the presentation of a table setting video.

on features derived from EMG sensor data reached 59%
accuracy for the right hand movements (MR) and 61.3%
accuracy for the left hand movements (ML). Precision for
ML was 0.97 vs 1.00 for MR features, recall for ML was
0.95 vs 0.92 for MR, and fl-scores for ML were 0.97 vs
0.95 for MR. Confusion matrices for all combined ML and
MR runs are shown in figure 9.
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Fig. 9: Confusion matrices for classifications of motions
performed with the left and right hand for 4 classes.

VIII. CONCLUSION

Through large-scale collection of human activities of
daily living data, annotation with contextually relevant and
ontologically linked labeling schema, analysis with diverse
multimodal methods for a wide range of sensor modalities,
and ultimately, incorporation into the OpenEASE robotics
cloud platform, the EASE human activities data analysis
pipeline provides the rich groundwork on which to build
cognitively-enhanced robotics for use in everyday scenarios.
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Abstract In this paper a method for clustering patterns represented by
sets of sensorimotor features is introduced. Sensorimotor features as a
biologically inspired representation have proofed to be working for the
recognition task, but a method for unsupervised learning of classes from
a set of patterns has been missing yet. By utilization of Self-Organizing
Maps as a intermediate step, a hierarchy can be build with standard
agglomerative clustering methods.

1 Motivation

The task of unsupervised discovering of meaningfull structures in data sets —
formally known as clustering — is probably among the most covered in computer
science. Without having any (or much) knowledge about the underlying structure
of the data, one hopes that partition of class can be extracted from the similarity
of patterns.

The goal of this work is investigate in how far semantic information can be
found in pattern represented by sensorimotor features. Sensorimotor features are
defined as two distinct points associated with some sensory data and connected
by some relation. In the scope of this work, it means a saccade-like representation,
but it is also possible to use it for instance in the spatial domain with two
locations in space being connected by some motor actions of an agent|[1,2].

The target output is a hierarchy of classes. The goal is thus not only to par-
tition the space meaningfully but also to obtain a memory structure for further
recognition tasks. The usage of a hierarchical memory is not only usefull from a
computational point of view, but also agrees with cognitive memory structures.
Psychological experiments give evidence for the existence of hierarchical propo-
sitional networks [3], sequence planning and execution [4], cognitive maps [5],
memorizing of sequences of symbols [6] or hierarchical mental imagery|[7].

In this work, the clustering of sensorimotor features will be performed on
image sets.

The following section 2 will explain how images are represented by sensori-
motor features and what those features actually consists of. Furthermore, Self-
Organizing Maps and Agglomerative Hierarchical Clustering will be explained
briefly in general since both are used in the overall clustering task. Section 3
presents the actual approach to clustering sensorimotor features and section 4
shows the results.
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2 Methods

2.1 Image Representation

Images are represented by a set of “eye movements” [8], mimicking the biological
way of recognition of views by performing saccades. The foveal spot in the human
eye — the only part with a high optical resolution — covers only a very narrow
part of the view. Still humans are able to perceive the environment in detail by
performing rapid eye movements, thus shifting the fixation location of the fovea
around.

The data structure used to store an “eye movement” is called a sensorimotor
feature. It consists of a triple < feature,action, feature > (FAF) where the
features contain some sensory data at an image location and the action stores
the relative position change from the first to the second feature. The features
are locally limited, resembling the narrow angle of the view field covered by the
foveal spot during a fixation. The action corresponds with the relative shift of
gaze.

Feature Extraction and Representation. The extraction of interesting fix-
ation location is based on the concept of intrinsic dimensionality. This concept
relates the degrees of freedom provided by a domain to the degrees of freedom
actually used by a signal and states that the least redundant (the most infor-
mative) features in images are intrinsically two-dimensional signals (i2D-signals)
[9,10].

For the actual extraction, nonlinear i2D-selective operators are applied to the
image to find the fixation locations. Afterwards the feature vectors describing the
local characteristics are generated by combining the outputs of linear orientation
selective filters [8]. As a result, the foveal feature data structure stores the local
opening angle, the orientation of the angle opening with respect to the image
and the color.

The action structure stores the relation between two foveal features, contain-
ing the distance, the difference angle (the difference between the opening angles
of those features) and the relation angle.

An image as a whole is represented as a set of such sensorimotor features.
For a given number of fixation locations, each pair of foveal features can be
connected by two actions since a sensorimotor feature is directional. In terms of
graph theory this makes a fully connected directional graph with a cardinality
of |[E| = |V|-(]V] —1) where an edge |E| is an action and a vertex |V] is a
fixation location. The number of sensorimotor features in total is equivalent to
the number of edges.!

2.2 Self-Organizing Maps

A Self-Organizing Map (SOM)[11] is a competitive neural network, developed
by Teuvo Kohonen in the 1980s [12].

! In practice, an 512x512 image has roughly 40-50 extracted foveal features.
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A SOM realizes a mapping from a higher-dimensional input space to a two-
dimensional grid while preserving the original topological information of the
input space. The inspiration for these networks comes from topological structures
in the human brain which are spatially organized according to the sensory input
[13] (see [14,15] for an overview of research results).

Working Principle. The basic principle of the SOM is to adopt a neuron and
its local area in order to make it fit better to a specific input, thus specializing
individual nodes to particular inputs. The map as a whole converges to a state
where certain areas of the map are specialized to certain parts of input space,
so that the topological relations of the input space are preserved in the output
space.

The training algorithm for the map is a iterative process during which the
best-matching-unit (neuron with minimum distance to current input pattern) is
found first. Afterwards the unit and its surrounding neurons are adapted to the
current input by changing the weight vector of a neuron according to (1)

m,(t + 1) = m,(t) + a(t) he, [x(t) — m,(t)] (1)

where ¢ denotes time. x(¢) is an input vector at time ¢, the neighborhood kernel
around the best-matching unit ¢ is given as h., and finally, the learning rate
a(t) at a specific time.

2.3 Hierarchical Clustering

Classically clustering algorithms can be divided into hierarchical and partitioning
ones. While the partitioning ones produce one, flat set of partitions, hierarchical
construct nested partitions, resulting in a dendrogram. In a dendrogram each
node represents a cluster; the original patterns are the leafs of the tree and thus
singleton clusters.

Agglomerative hierarchical algorithms start with each pattern in a singleton
cluster and merge them iteratively until only one cluster is left. The merging
process is basically driven by linkage rules which define which two clusters will
be merged in each step, and the similarity measure which is calculated between
individual patterns that populate clusters. Both, linkage and similarity have a
high impact on cluster quality.

Similarity Measures. Similarity is expressed within the range [0...1] where
1 states equality and 0 nothing in common at all.

Among the possible similarity measures, Fuclidean distance-based measures
seem to have the highest popularity. It can be derived from the more general
L,-norm (or Minkowski norm)

dy(,y) = (Z s — y|> . (2)

i=1
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With p = 2 the Minkowsk: distance results in Fuclidean.

The cosine measure is especially popular in document clustering. The simi-
larity is expressed by the cosine of the angle between two vectors and measures
similarity directly. It is given by

Ii'wj

lillz -l

3)

Scosine (Ii, J;j)

where z; - z; is the dot-product and ||z||2 is the Euclidean norm (p-norm with
p = 2) of the vector.

The Tanimoto similarity captures the degree of overlap between two sets and
is computed as the number of shared attributes.
Zi Ty

(4)

S T, 1) =
e A EF
with x; - ¢; being the dot-product and ||z||; is the Fuclidean norm of the vector.
This measure is also referred to as Tanimoto coefficient (TC).
[16] gives a comparison about the behavior of the three above-mentioned
measures.

Linkage Rules. Out of the number of available linkage rules, single and com-
plete linkage are two extremes. Single linkage defines the distance between two
clusters as the minimum distance between the patterns of these clusters. In
contrast complete linkage takes the maximum distance between patterns. Both
produce clusters of different shape: single linkage produces chain-like clusters
which is usefull for filamentary data sets; complete linkage produces sphere-like
clusters which works well with compact data.

In practice data sets often are not structured in a way suitable for the before-
mentioned linkage rules. Average based linkage rules incorporate all patterns
from a pair of clusters in the distance calculation. There are several variants like
“Average Linkage Between Groups” which takes the average distance between
all pairs of patterns or “Average Linkage Within Group” which takes the average
distance between all possible pairs of patterns if they formed a single cluster.
“Ward’s method”[17] aims at minimizing the intra-cluster variance by forming
a hypothetical cluster and summing the squares of the within-cluster distances
to a centroid. The average linkage rules, especially “Ward’s” linkage work pretty
robust on arbitrary data.

3 Hierarchical Image Clustering

3.1 Comparison of Sensorimotor Features and Images

The problem of comparing pairs of sensorimotor features brings up some prob-
lems. In [8], where the task was image recognition, those features were treated
as symbols with a particular FAF giving evidence for a set of scenes. The initial
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sensory measurements — angles, distances and colors — are numerical values which
can be measured rather precisely. Still 1:1 comparison of such values turned out
to be not very robust to slight transformations. The mapping of the original
values to intervals leads to a more robust representation with slightly different
values being mapped to the same interval.

The calculation of similarity between images with features treated as symbols
allows only the usage of usage of similarity measures based on set operations.
Initial tests with such similarity measures produced only mediocre results and
led to the idea of a numerical representation. Similar to approaches from doc-
ument clustering [18] a vector representation for an image was used. Such a
representation allows for the usage of numerical similarity measures like those
mentioned above.

3.2 Obtaining a Numerical Image Representation.

For obtaining the numerical representation, firstly the sensorimotor features were
extracted from a given set of images. A Self-Organizing Map was then trained
with the entire set of features. That way the system learned how to group sets
of features for a given output size (the map size) which corresponds with the
number of components of the vector used for image representation.

The actual representation for a particular image is obtained by presenting
the sensorimotor features associated with the image to the SOM. For each fea-
ture, a particular map node will be activated, being the Best-Matching-Unit. By
counting the activations of map nodes, a histogram is generated for each image
which serves as the vector for similarity measurement (fig. 1).

NN
AN

histogram
scene SOM layer of mappings

i)

Figure 1. From sensorimotor representation of image to histogram. The features repre-
senting an image are mapped to a previously trained SOM. A histogram representation
is obtained by counting those mappings.

3.3 Hierarchical Clustering and Quality Assessment.

The actual generation of the hierarchy was with agglomerative hierarchical clus-
tering (see 2.3), with all combinations of the five linkage rules and the three
similarity measures.
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For the assessment of the quality of the produced hierarchy, the f-measure is
a suitable measure[19]. It is computed from two other measures, precision and
recall. Precision states the fraction of a cluster that belongs to a particular class
and recall expresses the fraction of objects from a particular class found in a
particular cluster out of all objects of that class.

The f-measure is a combination of precision and recall. It states to which
extend a cluster x contains only and all objects of class ¢ and is given by

2 - precision(z, c) - recall(z, c)

F(z,c) = (5)

precision(z, c) + recall(z, c)
The values produced by the measure are in the range of [0...1]. A value of 1
means that a cluster is entirely populated by objects from one class and no other.
If computed for a hierarchy the f~-measure is computed for every node of the tree
for a given class and the maximum is returned.

The interpretation of a value of 1 is that there is a particular subtree of the
hierarchy with objects of class ¢ only and no other. The overall f-measure of a
hierarchy is then basically the sum of weighted f-measures for all classes

F = Z %F(c) = Z % ;?X(F(SC,C)) (6)

with n. being the number of objects in cluster ¢ and n is total number objects.

4 Results and Discussion

The performance has been tested with the “Columbia Object Image Library”
(COIL-20)[20]. This image database consists of 20 objects photographed under
stable conditions from 72 different perspectives, each view rotated by 5 °.

The initial tests were performed on small subsets of the database in order
to see whether the system is able at all to discover semantic information. Ob-
jects were selected randomly and from the selected objects, views were picked
randomly as well.

Table 1 shows that a f-measure value of 1.000 can be achieved with certain
linkage rules and similarity measures which means that image were separated
according to their inherent class.

Figure 2 shows the hierarchy generated

When tested with the full COIL-20 set, consisting of 1440 image, the fig-
ures drop significantly. With Tanimoto similarity measure and Ward’s linkage
rule, a f-measure of 0.358 can be obtained. Inspecting the generated hierarchy
shows that the rough similarities have been captured. For instance, round-shaped
patterns populate a particular subtree, but patterns from different classes are
mixed.

Based on the results above, you can say that this method is able to capture
semantic information in small scale, but on a large scale, the separation does not
work well enough.
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Table 1. F-measure for small COIL-20 subset for combinations of linkage rules and

similarity measures

Euclidean Cosine Tanimoto

Single 0.656  0.794  0.861

Complete 0.675 0.905 0915

Average between groups 0.656  0.915  1.000

Average within group 0.656 0915 0.915

Ward 0.675  1.000  1.000
O

/
|

N
mE -

Figure 2. Generated hierarchy with Tanimoto distance and Ward’s linkage.

5 Summary

RN

The hierarchical clustering approach introduced works on patterns represented
by sets of sensorimotor features. By mapping the sensorimotor features to a
Self-Organizing Map, a fixed-size vector representation of patterns is produced.
The mapping of the set of sensorimotor features of a particular pattern to the
output layer of the SOM generates a histogram of SOM activations which serves
as a representation of the pattern. Being a numerical representation, it can be
further processed with standard agglomerative hierarchical clustering methods

in order to produced the hierarchy.
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Abstract. Determining one’s position within the environment is a basic
feature of spatial behavior and spatial cognition. This task is of inher-
ently sensorimotor nature in that it results from a combination of sensory
features and motor actions, where the latter comprise exploratory move-
ments to different positions in the environment. Biological agents achieve
this in a robust and effortless fashion, which prompted us to investigate
a bio-inspired architecture to study the localization process of an arti-
ficial agent which operates in virtual spatial environments. The spatial
representation in this architecture is based on sensorimotor features that
comprise sensory sensory features as well as motor actions. It is hierar-
chically organized and its structure can be learned in an unsupervised
fashion by an appropriate clustering rule. In addition, the architecture
has a temporal belief update mechanism which explicitly utilizes the sta-
tistical correlations of actions and locations. The architecture is hybrid
in integrating bottom-up processing of sensorimotor features with top-
down reasoning which is able to select optimal motor actions based on
the principle of maximum information gain. The architecture operates
on two sensorimotor levels, a macro-level, which controls the movements
of the agent in space, and on a micro-level, which controls its eye move-
ments. As a result, the virtual mobile agent is able to localize itself within
an environment using a minimum number of exploratory actions.

1 Introduction

In spite of substantial advances in the design of artificial intelligent systems,
biological systems still represent the desirable ideal in many contexts. This is also
true regarding a basic competence in spatial cognition: the ability to determine
one’s own location within the environment. In this paper our aim is to investigate
how we can make use of results and concepts from psychology and neurobiology
in the design of a bio-inspired architecture for vision-based localization.

For this we have to consider several factors: First, a basic prerequisite is an ad-
equate representation of the environment. The notion of a cognitive map is often
seen as an abstract copy of the physical layout, which may, for example, resemble

* Corresponding author.
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an annotated cartographic representation, which can be substantially distorted
with respect to the true metrical and geometrical properties, but which is basi-
cally similar to a two-dimensional image-like entity. This concept of a “map in
the head” has been repeatedly criticized as potentially misleading, e.g., [17,42].
In our opinion, the most critical shortcoming of this concept is the absent or
indirect role of motor actions in the representational model. In most cases, there
is a clear separation between configurations of spatial entities and the actions
that can be performed on/with it. This is in stark contrast to recent develop-
ments in perceptual psychology and neurobiology. Starting with the affordance
concept of Gibson [10] over the common coding theory of Prinz [26,14] to the
concept of sensorimotor contingencies of O’Regan [23], many psychological the-
ories argue that the strict separation of sensory and motor components in the
representational concepts is no longer tenable. The well-studied primate vision
also brought up evidence for a stronger coupling of sensory and motor processes.
For example, the system of canonical and mirror neurons revealed an intricate
coupling of perception and motor control [30], and the postulated dorsal-ventral
stream also shows representations of space used for the organization of actions
[31]. Likewise, the firing of visual neurons in the ventral path, which were histor-
ically ascribed to early and solely sensory processing, turned out to be directly
related to eye movements [20].

In understanding how a representation is organized it is also important to
consider how it is established under natural behavioral conditions. Typically,
this is a dynamic process in which motor actions play an essential role. Mobile
agents move within the environment and produce a sequence of motor actions,
and each action changes the relation between the agent and the environment.
From the static perspective on a spatial representation, this is a disaster, but
research in active perception has revealed that these motor actions actually sim-
plify the development of a reliable representation of the environment [1,2]. It
should be noted that motor actions also play an important role in the develop-
mental landmark-route-survey (LRS) concept of spatial representation proposed
in [37], although the final stage, the survey representation, again represents an
image-like cognitive map. Finally, our own experiments with physically “impos-
sible” virtual environments provide strong evidence against the concept of an
image-like cognitive map [50,48], which is in line with a number of other studies
which also found evidence against a cognitive map in the sense of an enduring
allocentric representation [11,43,7]. Taken together, this indicates that a biolog-
ically plausible spatial representation should also comprise motor information,
and preferably not as a simple add-on but in an integrated combination with
sensory information. This leads us to make use of a sensorimotor representation
of the spatial environment in our architecture.

A second important point in the design of a biologically plausible architecture
is efficiency. Biological system often achieve their goals with a minimization of
both effort and use of resources. Regarding information processing, this can be
formalized as information-theoretic optimization. For example, the neural pro-
cessing in the visual system can be successfully described as a result of such an
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information theoretic optimization (e.g., [49]). For a biologically plausible archi-
tecture it would thus be desirable to obtain a maximum amount of information
about an environment with a minimum number of motor actions [34]. As a last
point in our design considerations, we have to take into account that biological
representations are typically not established and used in a purely bottom-up
fashion, but are part of an action-perception cycle, which involves bottom-up
processing as well as top-down control.

Here, we approach the aforementioned ideas by the design of an artificial sys-
tem, the Sensori-Motor Explorer (SMX), which is a virtual mobile agent that
uses sensorimotor features as basic representational elements for exploratory lo-
calization in virtual spatial environments. The system presented here results
from an integration of our sensorimotor representation [34,51] with a temporal
belief update mechanism [27] and a learning component which allows for the un-
supervised learning of the underlying hierarchical sensorimotor representations
[9]. Central to the system is the use of the principle of maximum information
gain to compute and execute the most informative actions. As a result, the SMX
can localize itself in its environment using a minimum of exploratory steps.

The paper is organized as follows. In section 2, we provide a brief overview
of the system properties of SMX, of its micro-level and macro-level exploration
behavior, and of the generic hybrid architecture that is used to control both
levels. The individual components of the system are then explained in more detail
in section 3. This section contains also descriptions of the learning mechanism
for the generation of sensorimotor hierarchies and of the temporal update of the
belief distribution in response to spatial context changes. The resulting system
behavior is described section 4. The paper concludes with a discussion of the
major achievements.

2 System Architecture

The SMX performs exploration and localization in a VR environment. We use
virtual reality and simulation in our research because this provides us with simple
and complete control over all properties of both the environment and the agent.
In particular, we can easily investigate the influence of features, objects and
spatial arrangements on the performance of the system. In the current state,
we use indoor environments consisting of rooms which are populated by typical
objects like chairs, bookshelves, etc. The objects and the room walls have uniform
or simple textures, typically with static lighting conditions.

The agent is characterized by two major features: first, it operates on two
behavioral levels with different sensorimotor granularity, and, second, both be-
havioral levels are controlled by a single hybrid architecture, which integrates
bottom-up sensory processing with a top-down uncertainty minimization strat-
egy. The two sensorimotor levels are illustrated in Fig. 1: at the micro-level,
a local view of the environment is explored in a detailed analysis by saccadic
eye movements. At the macro-level, the agent performs exploratory movements
within the spatial environment. In the bottom-up stage, features are extracted
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from the environment and combined with motor data. The resulting sensori-
motor features are the basic representational elements of the system. At the
micro-level, these features comprise local image features and the motor data
for saccadic eye movements while, at the macro-level, the sensorimotor features
combine information about local views with the motor data for changing the
agent’s spatial location in the environment. At both levels, an estimation of
the current state is performed based on the observed sensorimotor features.
States at the macro-level are distinctive regions in space (in this particular case
rooms) while states at the micro-level correspond to single views, which, in turn,
form features at the macro-level. The resulting hypothesis spaces have a tree-
like structure where nodes higher-up in the hierarchy represent disjunctions of
states. They are obtained by hierarchically clustering a large number of sampled
sensorimotor features [9]. Such a hierarchical structure has in fact been identi-
fied as a key property of spatial representations [13,45], and the formalization of
the resulting estimation problem naturally lends itself to a belief function rep-
resentation in Dempster-Shafer framework. In particular, this allows the agent
to remain agnostic with respect to the belief distribution over the leaf nodes if
the sensorimotor evidence does not support specific leaf nodes.

Micro-Level: Saccades Macro-Level: Exploratory Actions

Foveal Feature 2 View 2
Eye Agent
Movement Movement

Foveal Feature 1 View 1

Fig. 1. Two levels of sensorimotor granularity. The micro-level scene analysis (left) is
based on saccadic eye movements on a single view. At the macro-level (right), the agent
moves between different locations in the environment.

The architecture used at both behavioral levels is shown in Fig. 2. In each
action-perception cycle, a new sensorimotor feature is extracted and the belief
distribution over the hierarchy of the corresponding level is updated based on a
statistical model of state-feature co-occurrences which are learned in an initial
training phase. The top-down component uses the updated belief in order to
compute the expected information gain associated with subsequent features and
their corresponding actions [34]. The sensorimotor levels operate in an inter-
leaved fashion, with results from the micro-level passed as input to the macro-
level. Together, they enable the agent to perform a statistically optimal sequence
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Fig. 2. Generic hybrid architecture. The same type of architecture is used for the
micro- and the macro-level control. Sensory input and motor data are combined in
the bottom-up processing to obtain a sensorimotor feature, which is used to update
the belief distribution over the hierarchy at the corresponding level. From this, the
top-down strategy selects a new action by minimizing the expected uncertainty.

of exploratory actions to gain information about the environment. The different
components of the system, the internal sequence of operations and the resulting
behavior are described in more detail in the following section.

3 Components of the System

3.1 Sensorimotor Features

A characteristic property of the system is its representation of the spatial environ-
ment via sensorimotor features, which form the basic representational elements for
both the macro-level and the micro-level. A sensorimotor feature is a triple of the
form f = [v1,a,v3] where vy is the sensory feature vector obtained prior to ac-
tion a and wvs is the sensory feature vector obtained after executing a. By making
actions an explicit part of the representation, they become an additional source
of information for the state estimation because one can make use of their correla-
tion with states—a feature not present in classical localization approaches where
one is typically agnostic with respect to the question of where certain actions are
likely to occur, e.g., [40]. The continuous-valued sensorimotor vector f is mapped
to the closest element f; of a finite set of prototype vectors. At the micro-level,
the motor component of each feature is a saccadic eye movement, and the sensory
components are derived by a biologically motivated vision system by use of a lo-
cal wavelet analysis that is applied to the pre- and post-saccadic fixation points.
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At the macro-level, the motor component is a movement of the complete agent in
space, and the sensory components are labels (for the local views) that the agent
registers before and after the movement. The label for a local view is the result
of the micro-level analysis of the local view by saccadic eye movements, and this
label is then passed as sensory input to the macro-level analysis. Each level makes
use of a discrete set of sensorimotor micro- and macro-level features, and they are
acquired in an initial exploration process in which the association of sensorimotor
features with states in the environment is established by supervised learning.

An action at the macro-level consists of two rotations and one translation.
The first rotation turns the agent at the starting location in the direction of
the target location, and the following straight movement gets the agent to this
location. Here a second rotation aligns the agent to the orientation of the target
view. At the macro-level there is a distinction between the handling of intra-
and inter-room sensorimotor features. An intra-room feature belongs to a single
room and the updating for this case is described in 3.4. Inter-room features,
on the other hand, are those where the pre-action part belongs to one room
and the post-action part belongs to another. Here, the resulting belief has to be
transferred to the corresponding destination, which is described in 3.5.

3.2 Saccadic Eye Movements

An essential problem of processing a visual scene is the detection of the most
informative visual regions (e.g., those parts of an object, which are most infor-
mative for its identification). Information about the image structure at these
few locations is usually sufficient to draw reliable conclusions about the local
scene. Biological vision systems have developed an efficient design in which the
pattern recognition capabilities are concentrated in a small region of the visual
field, the central fovea, whereas the periphery has only limited optical resolution
and processing power. With a static eye, one can hence only see a small spot of
the environment with satisfactory quality, but this spot can be rapidly moved
with fast saccadic eye movements of up to 700°/s towards all the “relevant”
regions of a scene. This selection process is determined by bottom-up processes
on the input scene as well as by top-down processes determined by the memory,
internal states and current tasks [47].

In order to enable an efficient selective “sampling” of a local scene by saccadic
eye movements, we have integrated bottom-up and top-down processing into
a hybrid architecture (cf. Fig. 2). With respect to saccadic scene analysis, the
sensory processing stage in this architecture has two functions. On the one hand,
the pre-processing stage has to identify highly informative candidate locations
within the scene, which can be the target of saccadic fixations, and, on the other
hand, it has to provide detailed information about the fixated local pattern. It
consists of a wavelet-like image decomposition by size- and orientation-specific
filters and by nonlinear saliency operators based on the concept of intrinsic
dimensionality. A detailed description of the filters and the non-linear operators
can be found in [49] and [34]. In addition, we process each scene by a ratio of
Gaussians first in order to increase luminance invariance. The extracted visual
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features are combined with the motor information necessary for shifting the focus
to the next fixation point, thus forming a micro-level sensorimotor feature which
is then used to update the belief about the current scene.

3.3 Generating Sensorimotor Hierarchies

The hypotheses used by the SMX are represented in a hierarchical manner for
efficiency as well as for coping with non-specific evidence. The macro- and the
micro-level both have their individual hierarchical representation. Each node
H € H in the respective hierarchy H represents a set of singleton hypotheses, and
the leaf nodes represent hypotheses about individual items. The leaf hypotheses
are currently pre-defined while the higher-level nodes representing sets of views
or rooms are generated in an unsupervised clustering process. Fig. 3 illustrates
this structure for both, the micro- and macro-level.

The hierarchical structure in our system is organized according to the simi-
larity of the sensorimotor information associated with different states, i.e., views
and rooms sharing similar features are grouped together in the clustering process.
In the past, we have investigated alternative grouping principles, in particular

Level 1: Scene hierarchy Level 2: Room hierarchy

room_01 room_02

1

view_03 view_02 view 01

Level 1: Saccades Level 2: Exploratory Actions

Fig. 8. Two levels of hierarchical sensorimotor representations. At the micro-level (left)
scenes are organized in a hierarchical manner with individual scenes as leafs. A his-
togram of quantized saccadic information is stored in each node as a description of the
scene/class of scenes. At the macro-level (right) an equivalent representation is main-
tained for spatial information with leaf nodes representing single rooms. A room de-
scription consists of a histogram of quantized macro-level sensorimotor features (views
with motor action).
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“spatial similarity” [28], where each node represents a connected region in space,
and semantic similarity [29] based on an ontological model. The most suited prin-
ciple depends on the task, and we use sensorimotor similarity here, because the
resulting clusters are the most relevant for scene analysis/localization! while a
region-based organization might be more appropriate for a task like navigation.

In a previous version of the system [51], these hierarchies were constructed
manually for the domain. In order to automate this process, we developed an
unsupervised learning method that generates a hierarchy by performing an ag-
glomerative clustering on distributions of sensorimotor features associated with
a each hypothesis H. For this, one first needs to measure the similarity of two
sensorimotor features. Treating them as symbols and testing for equality worked
well for the recognition task described in [34], but it restricts the measure to
set-based operations. Initial tests with such similarity measures produced only
mediocre results and led us to consider a numerical representation. Similar to
approaches from document clustering [32], we thus decided to use a numerical
representation which allows for the usage of more suited similarity measures.

For obtaining the numerical representation, sensorimotor features are ex-
tracted from a large set of samples and a Self-Organizing Map (SOM) [16] is
trained with the entire sample set. That way the system learns how to group
sets of features for a given output size (the map size) which corresponds to the
number of components of the vector used for the representation of an instance.
The actual representation for a particular instance is obtained by processing all
sensorimotor features associated with a instance by the SOM. For each feature,
a particular map node will be maximally activated. By counting the activations
of map nodes for all features, a histogram is generated for each instance, which
can then be compared by the similarity measure. Based on this vector repre-
sentation, an agglomerative clustering algorithm generates a dendrogram which
results in the desired hierarchy. Starting with each pattern in a singleton clus-
ter, clusters are merged iteratively until only one is left. The merging process is
driven by linkage rules which define which two clusters are merged in each step
and by the similarity measure, which is calculated between individual patterns
populating a cluster. Empirical tests on the COIL-20 image set [21] using differ-
ent combinations of linkage rules and similarity measures led to the conclusion
that Ward’s linkage rule [44] and the Tanimoto coefficient [39] as a similarity
measure produce the most robust and suitable results.

3.4 Belief Update

The agent has to cope with the typical incompleteness, ambiguity and inconsis-
tency in input data from realistic environments. We hence have developed an
inference component, which uses Dempster-Shafer theory for uncertain reason-
ing [36]. This theory can be considered as a generalization of probability theory
and distinguishes between conflicting evidence and a lack of knowledge. A ba-
sic concept of this theory is the frame of discernment ©, which is the set of

! One can measure the suitability of different clustering principles by the loss of in-
formation that the resulting hierarchies introduce during the belief update.
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all possible singleton hypotheses in the domain. The resulting hypothesis space
2€ comprises all possible subsets H C ©. Since we are using the hierarchical
representation H described above, the number of relevant subsets H € H is sub-
stantially reduced. The belief induced by a piece of evidence can be expressed
by a mass function m : H — [0, 1] that assigns values to all hypotheses H such
that >,y m(H) = 1. A mass distribution can be interpreted as an underspec-
ified probability distribution that preserves the unspecificity of the underlying
evidence (e.g., a piece of evidence could support multiple hypotheses without
committing to a specific probability distribution over these hypotheses). In ad-
dition, a belief can be equivalently described by a plausibility function pl defined
as pl(H) = >_ ying9m(H'), which is sometimes more convenient.

Given all collected sensorimotor features fo.: = fo,..., f:, the mass distribu-
tion m(H¢| fo.t) over the hierarchy can be recursively computed by the general-
ized Bayesian theorem [384]:

m(H|for) =n [[ pl(foelhe) T 1= pl(fouelhe)), (1)
hi€H; ht€HE
pl(forehe) = pl(felhe) D m(H]| fo-1) (2)
H}>hy

Here, n is a normalization constant ensuring that the resulting mass values sum
up to 1, and HE denotes the complement of H;. The plausibility pl(f:|h:) of
the new feature f; given a hypothesis h; (i.e., a room at the macro-level and
a scene at the micro-level) is given by the relative frequency with which f;
was observed together with h; during the training phase. Since we are using
the hierarchical representation H instead of the full hypothesis space 2€, the
computational complexity of the update is reduced from exponential to linear
[12,24]. This restriction introduces a certain error, however, due to the grouping
of hypotheses sharing similar features in the clustering process, this error is
largely negligible in practice.

3.5 Context Change

Compared to an earlier version, we extended the architecture by incorporating
inter-room sensorimotor features in the update process using a Dempster-Shafer
filter algorithm, which performs a prediction step similar to that in classical Bayes
filters [15,40]. For features that indicate a state transition, the update in (1) is pre-
ceded by the following transition update. It consists of a conjunctive combination
of the prior belief over H;_; with the newly induced belief over H; (under a first-
order Markov assumption) by summing over all prior states H;_1 [5]:

m(Hy| foxr) =n Y m(H;|Hy_1, fo) m(H;_1| for—1) (3)
Hy 1

The transition belief m(H;|H¢_1, f¢) can be further simplified by applying the
disjunctive rule of combination ©) [38] in order to make the belief depend only
on singletons h; 1 instead of aggregated states H; 1:
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m(Hy|Hy—1, fr) = @ m(Hilhi—1, ft), (4)

ht—1€H: 1
(m1@mo) (H)= > ma(Hy) ma(H). (5)

Each m(H¢|hi—1, ft) is estimated in the training phase mentioned above. What is
interesting here is that, in contrast to the prediction step in Bayes filters, state
changes actually provide additional information which leads to a refinement
of the localization belief. This is due to the fact that actions do not occur in
arbitrary states but rather follow distinct sensorimotor patterns, which usually
ties the act of moving in a certain way to a distinct set of locations in the
environment (e.g., turning is more likely at corners).

3.6 Top-Down Uncertainty Minimization

The uncertainty minimization strategy used by the agent is based on the IBIG
algorithm (inference by information gain [33]) and lets the agent perform ac-
tions that reduce the overall amount of uncertainty, both at the micro- and at
the macro-level. Its basic principle is to determine the action a* exhibiting the
highest expected information gain with respect to the current belief distribution.
The expected uncertainty is computed for each potential sensorimotor feature
f'a = (v1,a,v3) that is compatible with the current state, i.e., v; and a match
the current sensory input and a possible action while vs is integrated out. First,
(1) and (3) are applied for each potential sensorimotor feature §, corresponding
to an action a in order to obtain the updated belief m(H¢| fo.t, fa) Next, the
local conflict uncertainty measure I [25] is used to select the action a* yielding
the lowest expected uncertainty:

10 = 3 () g W'ﬂ'ﬁ , (6)

a* = argmin B [ I(m({fos. )] - (")

a

After executing the selected action (an eye movement at the micro-level or a
change in location at the macro-level) the belief is updated with the actually
observed sensorimotor feature and additional exploration steps are performed if
ambiguity persists.

4 System Behavior

The following is a short description of how the components of the SMX inter-
act in order to explore the environment and localize the agent in it. During the
initial exploration phase the agents moves in the environment in order to build
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Fig. 4. lllustration of how the SMX localizes itself in the environment. An single update
cycle at the macro-level is shown at the top. Parts of the environment and its hier-
archical representation are shown in the middle. The lower third shows the updated
beliefs after processing a sequence of sensorimotor features.
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up a representation for both, the micro and macro level. Due to the way sen-
sorimotor features are represented, salient points need to be extracted from the
environment, serving as starting and destination points for actions. At the mi-
cro level, an image filter sensitive to intrinsic 2-dimensional features extracts the
salient points from views, while, at the macro level, we currently use pre-defined
locations in the environment. From the set of all possible sensorimotor features
a large number of samples is randomly generated for both levels. Based on these
samples, the hierarchical representations are build by agglomerative clustering.

The macro-level cycle starts with the agent facing a local scene. The micro-
level subsystem is used to analyze this local scene by saccadic eye movements.
The new sensory information returned from the micro-level exploration is a scene
label which, together with the macro-level motor data and the sensory informa-
tion obtained at the previous location, forms the new macro-level sensorimotor
feature f;. This feature is then used to update the current belief distribution
over the hierarchy using (1) for an intra-room feature and additionally (3) for an
inter-room feature (indicating a context change). Based on this, the next action
is selected according to the minimum expected uncertainty as defined by (7).
The agent executes this action by first rotating and then moving towards the
target location. At the new location, it rotates again, if necessary, and starts a
new micro-exploration by the saccadic eye movement subsystem. The cycle is
repeated until a sufficient belief threshold for one of the macro-level hypotheses
is reached.

A small example of a complete localization run consisting of three exploration
steps is shown in Fig. 4. After processing the first sensorimotor feature, the agent
has a strong belief for cluster 1, which consists of four kitchens. After processing
the next feature, the evidence equally supports two of the kitchens and only the
final feature completely resolves this ambiguity. A detailed quantitative analysis
of the system’s localization performance and of the efficiency of the action se-
lection strategy was conducted in [51] using different virtual environments. The
number of exploration steps required for sufficiently reducing localization uncer-
tainty is considerably lower compared to the baseline of randomly performing
actions (see Fig. 5), in particular for environments that exhibit high degrees of
perceptual aliasing.

exploration steps error rate
1.0 10 %
T ol 1l 7 14} B SCAN B SCAN
0.8 b o SMX o SMX
C
Y ®© 10}F 4
Qo6 2
= E g 5%
S 2l
- -+
0.2 Il SCAN (Belief) v o}
3 SMX (Belief) o 0% I
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
exploration steps

Fig. 5. Performance comparison of the IBIG exploration strategy with random action
selection based on the number of required actions for reaching a belief level of 0.9 (left)
and on the error rate (right). Figure adapted from [51].
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5 Discussion

We developed a mobile virtual agent, SMX, which localizes itself in an indoor
environment via exploratory actions at two levels of sensorimotor granularity.
Compared to a previous version of the agent [51], we extended it by a belief up-
date across different rooms in the environment and by a method for obtaining the
underlying hierarchical representations in an unsupervised fashion. The former
is based on a new approach for updating Dempster-Shafer belief distributions
over time [27] and allows the agent to distinguish identical looking rooms and
reduce localization uncertainty more quickly. Beyond that, the agent is charac-
terized by three main properties: first, the spatial environment is represented in
terms of sensorimotor features. This is motivated by doubts about the biological
plausibility of map-like representations, and by psychological and neurobiologi-
cal evidence suggesting a joint contribution of sensory and motor information to
perception and representation. In particular, the sensorimotor representation en-
ables the utilization of actions as an additional source of information due to their
correlation with states. Second, the system operates in a loop of bottom-up pro-
cessing and tow-down reasoning governed by the principle of information gain.
This is achieved by a hybrid architecture in which a top-down strategy selects
those exploratory actions providing the highest expected information gain with
respect to the current belief. Third, the same generic hybrid architecture and
information-gain strategy are used at two levels of sensorimotor granularity. This
results in active localization behavior with location changes at the macro-level
and saccadic eye movements at the micro-level, which mimic the way humans
analyze visual scenes.

The combination of these components yields a psychologically and neuro-
biologically plausible system that acquires a maximum amount of information
about its environments using a minimum number actions. This uncertainty min-
imization principle is particularly important for environments exhibiting a high
degree of perceptual aliasing, e.g., rooms consisting of many similar or identical
objects. The tests conducted in [51] furthermore indicate that the performance is
not degraded by minor distortions of image features or of object configurations.

As mentioned, the SMX shows some differences to commonly used representa-
tions of spatial environments. The greatest difference exists with respect to those
approaches that use grid-like or image-like two-dimensional maps since these do
not include any explicit information about potential motor actions [6,41]. With
respect to topological representations, the relation is dependent on the interpre-
tation. If the key concept of a topological representation is seen in the abstraction
from metrical properties, there is a clear difference to our approach since the mo-
tor actions in our sensorimotor representation are encoded in association with
metrical information (e.g., the translation vector of an eye movement). Topolog-
ical representations are also different from our approach if they are simply seen
as less restricted variants of conventional spatial maps. However, it is also possi-
ble to interpret the edges in a topological graph in the sense of actions that are
required to move from one node to the other, and under this perspective there
is a much closer relation to the sensorimotor representation (e.g., [3,19,11,18]).
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In the future development of SMX, we will apply the generic architecture to
additional granularity levels of sensorimotor features. Furthermore, we will in-
vestigate the suitability of different clustering principles at these levels, e.g., by
incorporating semantics of clusters [35] and by using spatial structuring princi-
ples that are better suited for problems like large-scale navigation [46,28]. This
design will be guided by an ongoing evaluation based on comparisons with em-
pirical results. On the behavioral side, this will be actual eye movements and
macro-levels actions of human subjects, both in realistic and in virtual environ-
ments. On the neurobiological side, the most interesting entity for our future
system development is the place cell [22]. Although there is currently no module
in our system that is intended as a model of place cells, it is interesting to note
that the units in our hierarchy are both influenced by the properties of the local
environment and by the history of how the agent arrived at the current position,
a non-trivial property that has also been observed in hippocampal neurons [8].
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With the rapid evolution of space technologies and increasing thirst for knowledge about the origin of life and the
universe, the need for deep space missions as well as for autonomous solutions for complex, time-critical mission
operations becomes urgent. Within this context, the project KaNaRiA aims at technology development tailored to the
ambitious task of space resource mining on small planetary bodies using increased autonomy for on-board mission
planning, navigation and guidance.

This paper focuses on the specific challenges as well as first solutions and results corresponding to the KaNaRiA
mission phases (1) interplanetary cruise, (2) target identification and characterization and (3) proximity operations.

Based on the KaNaRiA asteroid mining mission objectives, initially, a mission reference scenario as well as a
reference mission architecture are described in this paper. KaNaRiA has been proposed as a multi-spacecraft mission
to the asteroid main belt. Composed of a flock of prospective scout spacecraft, a mother ship carrying the mining
payload and several service modules placed on a 2.8 AU parking orbit around the Sun, KaNaRiA intends to
characterize main belt asteroid properties, identify targets for mining and perform a soft-landing for in-situ
characterization and mining.

Subsequently, the autonomous navigation system design of KaNaRiA for the interplanetary cruise is presented.
The navigation challenges, which arise in phases (1) to (3), are discussed. Particular attention is given to the sensor-
technology readiness-level, accuracy, applicability range, mass and power budgets. In order to navigate in the
vicinity of an asteroid, an information fusion algorithm is required that aggregates multi-sensor data as well as a-
priori knowledge and solves the task known as simultaneous localization and mapping (SLAM). In order to deal with
uncertain and inconsistent information and to explicitly represent different dimensions of uncertainty, a belief-
function-based SLAM approach is used, which is a generalization of the popular FastSLAM algorithm.

The objective of the guidance task is the autonomous planning of optimal transfer trajectories according to
mission driving criteria, e.g. transfer time and fuel consumption. Optimal control problems and the calculation of
trajectory sensitivities for on-board stability analysis as well as real-time optimal control are explained.

Bringing cognitive autonomy to a spacecraft requires an on-board computational module as a central spacecraft
component. This module is responsible for state evaluation, mission planning and decision-making regarding
selection of potential targets, trajectory selection and FDIR. A knowledge-base serves as a database for decision
making processes.

With the aim to validate and test our methods, we create a virtual environment in which humans can interact with
the simulation of the mission. In order to achieve real-time performance, we propose a massively-parallel software
system architecture, which enables very efficient and easily adaptable communication between concurrent software
modules within KaNaRiA.
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I. INTRODUCTION

Following the developments and the news on current
space missions such as Rosetta or Dawn, one of the
biggest challenges for small body rendezvous and
landing missions is the large communication delay that
leads to operational problems. Operations need to be
planned thoroughly in advance. Nevertheless failures
and anomalies often result in the complete loss of the
spacecraft or lander. One approach to improve the
reliability of complex operations is to enhance the
autonomy, decision making and FDIR (fault, detection,
isolation and recovery) capabilities of the spacecraft.

This is the approach that the project KaNaRiA takes
up. The German acronym KaNaRiA stands for
Kognitionsbasierte, autonome Navigation am Beispiel
des Ressourcenabbaus im All, which translates into
Cognitive Autonomous Navigation for Deep Space
Resource Mining. As an interdisciplinary project,
KaNaRiA focuses on autonomous mission planning,
navigation and guidance in a-priori unknown
environments dealing with the challenges of future
space missions to minor planets. KaNaRiA strives to
increase on-board spacecraft autonomy in the context of
an asteroid mining scenario. The development of these
concepts takes place in a virtual simulation
environment, which serves as a test bed for a mission
study. In this paper we give an overview of the
KaNaRiA mission concept and the individual
components of the system.

The paper is structured as follows. In section Il and
111, the engineering solutions applied to the particular
mission scenario of KaNaRiA are presented,
specifically the mission concept and reference scenario
followed by the navigation system design and
autonomous navigation concept.

Section IV covers the contribution of information
fusion, which combines a-priori knowledge with sensor
data to provide an information basis for autonomous
decision-making.

In section V it is explained how the mathematical
field of optimization and optimal control is used to
calculate optimal interplanetary trajectories by solving
infinite-dimensional optimal control problems.

In section VI the central component for on-board
mission planning and autonomous decision-making is
presented.

Section VII describes functionality of the simulation
environment and its underlying software architecture.

1. MISSION: ASTEROID MINING

As an application for the proposed autonomous
navigation, guidance and simulation solutions, an
asteroid mining mission concept is defined.

The aim of asteroid mining opens up a huge space of
scenarios and possibilities to implement a successful
mission. The mission design changes depending on the
desired resource, the purpose of usage or the location of
the asteroid target. In order to specify a scenario, the
JPL Rapid Mission Architecture [1] method has been
applied.

11.1 Mission Processes

The mission concept derivation is based on a
separation and identification of processes that have to be
fulfilled with the goal of mining a space body. First, the
targets have to be mapped and characterized according
to their natural resources and potential consideration for
mining. These activities are done under the scope of
Mapping, Characterization and Resource Determination
(MCRD). Second, after having appointed a suitable
target, the resource is mined by a separate miner
(Resource Extraction and Exploitation, REaE). As an
asteroid mining mission is by default a long-term
mission, the transportation of the resources from the
mining site to the refinery or designated user as well as
the maintenance of the space elements involved have to
be taken into account. Those activities are covered
within the Maintenance and Logistics. For a more
detailed description and definition of the mission, it is
referred to Probst et al. [2]

As each of the processes involved in a successful
mining mission imposes different requirements on the
spacecraft architecture, separate spacecraft elements
have been selected, each of them specialized for one
specific process. The selection trade-off for each
mission element architecture was done using a
numerical method based on relative judgments with
respect to suitable trade-criteria. The selection process is
described in Probst et al. [2]

11.11 Mission Elements

The following mission elements are involved in the
mission scenario:

The Potential Target Characterization Modules
(PTCMs) are in charge of exploring the considered
targets in order to analyse their potential resource
character.

The KaNaRiA Miner Spacecraft (KMS) lands on the
designated target and excavates the resource.

The Refuel- and Repair- Elements (RF/RP) take care
of the maintenance problems that occur.

An unmanned, autonomous Operational Centre
(OC) serves as the main communication and delegation
hub. It coordinates the mission elements and their tasks,
sustains and collects the data and inherits the overall
power of decision.
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To complete the mining cycle, resource transporters
are needed that carry the material from the mining site
to the refinery or from there to the costumer.

11111 Mission Reference Scenario

As the mission scenario serves as a basis for the
navigation, sensor fusion, guidance and autonomy
algorithms and their implementation in a simulator, the
mission scenario starts with a mission setup at a
circular, Sun-bound parking orbit (2PO) with a semi-
major axis of 2.8 AU. [2]

On 2PO, the OC, KMS and the maintenance
spacecraft as well as the transporter are stationed
whereas several PTCMs swarm out for their
investigation and search for potential precious
resources. Each PTCM consists of an orbiter and a re-
docking lander so that it can visit more than one asteroid
without coming back to 2PO. This way it is able to
characterize each target thoroughly. The data obtained is
relayed to the OC, which selects a definite target to
which the KMS will head for mining.

In the simulator and further course of this project,
the implementation and design will focus on the design
of the PTCM as the developed technologies and
algorithms can be transferred and applied to the other
involved modules as well.

I11. NAVIGATIONAL CONCEPT FOR DEEP
SPACE MISSIONS

The KaNaRiA reference mission scenario envisages
four main operational phases according to the mining
processes described in section Il.I: MRCD (Mapping,
Characterization and Resource Determination), REaE
(Resource Extraction and Exploitation), Maintenance
and Logistics. Each of these phases imposes stringent
performance  requirements for the navigation
subsystems of the various mission elements and their
navigation autonomy capabilities. Within this section,
the MRCD mission operations timeline is presented.
The navigation requirements for PTCM spacecraft
during the MRCD phase are discussed. The navigation
system design of the PTCM is described and an
autonomous navigation concept for interplanetary cruise
is introduced.

PTCM Mission Operations Timeline

The operational concept for PTCM spacecraft is
built upon the on-board autonomous capability for
mission planning. Based on available system status
information and collected knowledge about the target
asteroid shape and dynamics, the spacecraft shall be
able to select between 3 main concepts of operations
while approaching an asteroid: an encounter mission
and a lander mission with an additional option on red-

coking the lander with the orbiter. The operational
timeline for the scenarios is depicted in Fig. 1.

In an encounter mission scenario, the PTCM will
perform remote sensing of the asteroid from a safe
distance during a pre-planned time span. After
finalization of the remote sensing campaign the PTCM
will continue its course to a second target asteroid.

A lander mission scenario is selected if the asteroid
target shows promising results after the remote sensing.
The lander is released from the PTCM and uses its
steering capabilities for safe landing on the designated
landing site. The surface operations include a deep
investigation of the asteroid’s composition with a Low
Frequency Radar as well as a Laser-Induced Breakdown
Spectroscopy (LIBS) of the surface material. The data
shall be relayed to the PTCM orbiter. The lander
steering capabilities enable the performance of hopping
or hovering manoeuvres between sample sites of
interest. Additionally, the PTCM lander can ascent from
the asteroid surface and re-dock to the PTCM orbiter in
order to continue its course to a new asteroid. In case
the PTCM delta-v capability is insufficient to perform a
flight to a follow-up asteroid, the PTCM stays in the
orbit around the asteroid and awaits - if profitable - the
RF for refuelling.

The navigation system design of the PTCM
spacecraft has been developed in order to ensure the
spacecraft’s capability to determine its location either
absolutely in space or relatively to the target throughout
all mission phases.

PTCM Navigation Requirements

The KaNaRiA mission concept proposes the
deployment of 5-15 medium-size spacecraft, called
PTCM, from a cargo control centre located in Sun-
bound orbit about 2.8 AU distance from the Sun and 1.8
AU from Earth. At such distances, two-way ground-
spacecraft communication delays exceed thirty minutes.
Free-space transmission losses are as high as 290 dB in
Ka-band, in which future deep-space communication

| Encounter Mission}
Lander mission
Re-docking Lander mission

Pre-encounter
Characterization|
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Rendezvous
Initial
Characterization|
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Charac!enzanonl Departure

In-orbit
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i
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Fig. 1: Operational timeline (from left to right) for PTCM
spacecraft,.
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infrastructure will operate. The generation of sufficient
power to frequently communicate with Earth for
tracking purposes, while keeping all subsystems
thermally  conditioned and performing asteroid
characterization operations is not a trivial problem given
that the solar flux does not exceed 200 W/m2,
Furthermore, the simultaneous operation of 5-15
missions is a challenge for the already busy tracking and
processing schedule of the deep-space ground
infrastructure. It is therefore necessary to design the
PTCM with a sensible balance between system
complexity and self-contained autonomous navigation
capabilities.

It has been determined that a PTCM shall be capable
of performing on-board orbit determination (OD) at the
100 km precision during cruise in order to support
guidance and control during orbit manoeuvring. OD
shall be performed fully autonomously without ground
support. The stability of the on-board solution shall be
guaranteed for a transfer time as long as 4 years. OD
updates from ground shall be expected regularly
assuming a tracking campaign of maximum 1 week
every 5 months.

The PTCM shall be targeted to a rendezvous-plane
crossing point between 100 and 500 km from the
asteroid surface depending of the volume sphere of
influence of the particular object. The 3-c error ellipsoid
at rendezvous condition shall be constraint to 100 m — a
requirement that has been fulfilled comfortably by
previous asteroid fly-by missions.

During the asteroid in-orbit phase, a thorough
characterization of the asteroid surface properties,
internal structure as well as landing site selection and
mapping will be carried out. During the observation
campaigns a position accuracy in the order of meters
relative to the asteroid surface shall be achieved.

The landing sequence will consist of a horizontal
equalization phase and a subsequent vertical descent.
The landing strategy has been designed to ensure soft
landing (the survival of the PTCM lander structure),
safe landing (safety of landing site avoiding obstacles
bigger than 50 cm and slopes higher than 10 degrees)
and hazard detection capability up to 10 minutes from
touchdown.

Navigation System Design for a KaNaRiA PTCM

The PTCMs have been designed to perform inertial-
aided optical navigation throughout all mission phases.
In Table 1 a list of the navigation instruments has been
provided including their type, mass and primary usage.

Cruise navigation
During cruise the angular observations of planet

chords, star-planet and star-Sun angles are combined
with the relative Doppler shift of the optical Sun spectra
to derive spacecraft position and velocity. The self-

Instrument Mass  Usage
[ka]
Resonance .
Scatter 429 Optical S_un Doppler
observations
Interferometer
Coupled Star- Stellar attitude and star-
1.98 .
Sun tracker planet observations
Fine Sun 0.65 Coarse Sun attitude
Sensor
Wide-Angle 2 Asteroid detection and
Camera mapping
Narrow-Angle 6  Surface mappin
Camera ppIng
Lidar Altimeter ~ 3.52  Range finder
3D Lidar 6.5  Asteroid mapping
Space Inertial 7 Inertial position and

Reference Unit attitude reconstruction

Table 1: PTCM navigation sensor suite

contained navigation approach is based on the method
proposed by Guo [3] and further investigated by Yim
[4].

Spacecraft attitude is reconstructed from the stellar
attitude provided by star tracking and from the rate-gyro
integration during manoeuvring. Coarse Sun attitude
sensors are mounted as back-up solution.

Fig. 2 shows the power flux available from planetary
emission and chord lengths of solar system planets in
the optical bandwidth as observed by a spacecraft flying
a sun-bound circular orbit at 2.8 AU.

Planetary atmospheric and surface albedo has been
taken into account. The main selected bodies to be
observed for navigation are the Sun, Jupiter and Earth.
However other planetary bodies, including the targeted
asteroid, are observed when illumination and geometry

10°
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Fig.2: Power flux (top) and angular chord length (bottom) of Sun and
solar system planets as observed from a Sun-bound circular orbit
with semi-major axis of 2.8 AU.
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conditions are favourable.

During  cruise, Doppler  frequency  shift
measurements from the Sun optical spectra are used to
derive the spacecraft radial velocity. The derived radial
velocity measurements are combined with planet chord
length angles, planet-star and Sun-star angles. Angular
measurements are processed according to standard
celestial navigation procedures together with radial
velocity measurements in an unscented Kalman filter. A
particle filter is simultaneously executed in parallel with
timely state updates from the Kalman filter. The particle
filter (see section 1.V) allows for a robust estimation in
mismodelled dynamic environments, as for instance, the
vicinity of an asteroid whose gravity field has not been
probed. Fig. 3 illustrates the optical cruise navigation
system of a PTCM spacecraft.

Optical navigation is aided by means of inertial
measurements from the space inertial reference unit
during orbit and attitude manoeuvring.

Resonance Scattering
Interferometer Doppler

Navigation
Information .
Solution

%% }%@ Radial velocity System Fusan‘tPamcle 3
ilter
J Position & velocity

Celestial Kalman Filter

Planet-Star Sensor

System

A 0
Q’ Dj Star azimuth-

elevation

‘Slar database ‘ ‘ Dynamic Model ‘

Fig. 3: Integrated celestial and optical Sun Doppler navigation
system.

Asteroid relative navigation

In the vicinity of the target asteroid, optical
navigation is implemented by means of feature tracking
with two optical cameras and a 3D LIDAR. Visual
SLAM (simultaneous localization and mapping) is used
to reconstruct the asteroid shape and global map, and to
locate the spacecraft relative to the generated surface
map (see section L.V). A parallel estimation of both,
spacecraft state and map, allows for increasing accuracy
in the asteroid spin-state knowledge i.e., rotation axis
orientation, rotation rate, tumbling modes, etc.

Star trackers are wused for stellar attitude
reconstruction as long as the asteroid covers between 60
and 80% of the instrument field of view. Rotation-rate
measurements are collected from gyros to integrate
attitude between stellar-blind phases and during the
descent of the PTCM lander.

During descent, the PTCM lander uses a LIDAR
altimeter to reconstruct height and vertical speed
independently from the main SLAM navigation engine.
The LIDAR altimeter solution is fed as input for the
collision avoidance decision process handled by the on-
board mission planning autonomy.

IV. MULTI-SENSOR FUSION FOR SPACE
NAVIGATION

The information fusion subsystem aggregates multi-
sensor data and a-priori knowledge to a unified
representation, which serves as a basis for cognitive
autonomous decision-making (Fig. 4). This bio-inspired
model of decision-making relies on perceptions
governed by top down as well as bottom up information
flows. [5,6]

In particular, the aggregated information is
comprised of i) top-down a-priori knowledge about the
world and the spacecraft as well as ii) bottom-up
perceived knowledge, which consists of fused data from
multiple sensors. In conjunction, this information results
in an estimate of the current spacecraft and environment
state.

The multi-sensor fusion and state estimation solves
the versatile challenges posed by the different mission
phases (see section 1) within one framework.
Throughout all mission phases, a particle filter is used to
approximate the desired probability distribution.

In the interplanetary cruise phase, the distribution

p(x¢1Zo.., Uy, )¥* over the current spacecraft state

x. =[r],qf, 71,470,747 1"

given all measurements z,, and controls u,., is
estimated in a heliocentric reference frame, where r; is
the position, q, the attitude, r, the velocity, g, the
angular velocity, #, the acceleration, and g, the
angular acceleration of the spacecraft. z, contains
measurements from the interferometer, the coupled Sun-
star tracker and the wide-angle camera (see section Il1).

In the MCRD phase, the camera suite and the
mapping LIDAR are able to perceive the asteroid. This
enables the multi-sensor fusion module to estimate a
map Y of the approached asteroid. This provides a

low level controls u

high level actions

| Fused Knowledge |

bottom up T ltop down T

Multi-Sensor Fusion A-Priori Knowledge

Fig. 4: Knowledge acquisition process for cognitive autonomous
decision-making.

sensor

measurementsW T

[ KCS

¥ For convenience reasons we use a,., as a short
notation for a time series of variables a,, a;, ..., a;.
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physical description of the asteroid and, even more
essential, can be used as a reference for relative
spacecraft state estimation.

Although the two tasks of localization and mapping
can be solved separately, they are not independent of
each other. It is a joint estimation problem commonly
known as Simultaneous Localization and Mapping
(SLAM) [7] (Fig. 5). However, using a conditional
independence assumption, the corresponding joint
probability distribution can be factorized into one
conditional distribution over the trajectory x,., and one
overthemap Y:

P(xo:t' Y|Zo:t' ul:t) = p(xO:tlzo:t' ul:t) P(y|x0:t: ZO:t)'
Trajectory Map

This allows us to use a technique called Rao-
Blackwellization. [8] In the first step, the distribution
over the trajectory is approximated by the particle filter
[9] using controls, measurements and map estimate. In
the second step, the current state is assumed to be
known and the distribution over the map is computed
analytically.

Initially, a landmark-based map is estimated in order
to establish robust relative navigation in an asteroid-
centric reference frame. The landmarks will be extracted
by performing bio-inspired feature detection and
description using Intrinsic 2 Dimensional (12D) features
[6,10] on the images obtained by the on-board cameras
and with the distance information provided by the
LIDAR instruments.

When the landmark map has full coverage and
allows for a robust localization, it is extended by a
belief-function-based grid-map of the asteroid in the
proximity operations phase. It divides the volume into
discrete grid cells where each grid cell represents an
estimate of a corresponding piece of the physical
environment. While the uncertainty regarding the true
state is usually represented by a Bayesian probability,
we are using belief functions [11,12] here, which allow
to assign probability mass not only to the singletons a €
0 of a hypothesis space © but also to all subsets of the
power set A € (0) including the superset @ and the
empty set @. This approach makes different dimensions
of uncertainty explicit. E.g. a full lack of evidence is
expressed by assigning all mass to ©® while conflicting

Fig. 5: Bayesian Network depicting the SLAM-problem.

evidence is expressed by mass assigned to @. In the
Bayesian probability framework, both cases would
result in an equal distribution and would be therefore
undistinguishable. There are several works on mapping
using belief functions [13,14,15] while a Dbelief-
function-based SLAM approach as a generalization of
the successful grid-map based FastSLAM [16]
algorithm was presented by Reineking and Clemens.
[17] This approach was already applied in the context of
extra-terrestrial exploration. [18,19]

The combination of belief functions and a grid map
allow for i) a finer representation of the physical
environment and ii) a better representation of the
cognitive uncertainties. [20] This in turn enables the
autonomy to pursue advanced exploration strategies to
actively investigate possible landing sites, with respect
to commodities, hazardous areas and fuel consumption.
Based on the uncertainty information in the maps (grid-
map as well as landmark based) the autonomy can be
provided with desired actions with respect to every
navigation instrument. Thus, particular actions can be
assessed for their expected information gain.

V. OPTIMAL TRAJECTORY PLANNING

Trajectory planning for deep space missions is a
topic of great interest. Mathematical fields like
optimization and optimal control can be used to realize
autonomous missions while protecting resources and
making them safer. A perturbed optimal control
problem (OCP(p)) has the form

I;{iqilF(x,u,p,t) = g(z(ty), ty) +/0 ’ fo(z(t),u(t),t, p)dt

st (1) = F(e(t), ult), 1)
z(0) = zo
(o, 2(ts),p) =0
C(x(t),u(t),t,p) <0

with F being the objective function depending on the
state x(t) at time t € [0,tf], the vector p describing
model perturbations and the control function u(t) by
which the system's dynamic f can be influenced via
differential equations. The control u has to be chosen in
such a way that the constraints C as well as the initial
and terminal conditions W are fulfilled while
minimizing the objective function F.

In principle, there exist two ways to solve an
OCP(p), the so called indirect and direct methods. The
indirect methods are being studied since several
decades and need advanced skills regarding optimal
control theory. Some algorithms are described in
Burlisch [21], Deuflhard [22], Ho and Bryson [23] as
well as Miele [24]. The direct approach transcribes the
infinite-dimensional OCP(p) into a finite-dimensional
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non-linear  optimization problem (NLP(p)) via
discretization of states and controls. [25,26] An NLP(p)
consists of an objective function F and constraints G:

min  F(z,p)
z

st. Gi(z,p)=0,i=1,..,M,
Gi(z,p) <0,i=M.+1,...,.M

The objective function F depends on the
optimization vector z:= (x{,..,xy,uj, .., uy,) with
x;,u;, i =1,..,N; representing the former x and u at
discrete time points 0 = t; <t, < <ty, :=tr,x =
x(t;),u; = u(t;) and the perturbation vector p. For a
fixed parameter p = p, an optimal solution is called the
nominal or undisturbed solution indicated by z(p,).

The OCP(p) formulation's dynamic model describes
the movement of the spacecraft due to main
gravitational influences of the sun and other planets as
well as the thrust commands through ordinary
differential equations (ODEs):

P Psc
sc r T
. . .
= | B | = [ 20 TR A
e e
golsp

Herein p. is the position vector of the spacecraft,
Ui, i € [Sun, Mars, Jupiter, Saturn] is the
gravitational constant of the according celestial body
and r; the direction vector between spacecraft and body,
T = [uy, uy, u,] is the thrust vector, m,, the spacecraft's
recent mass, I, its specific impulse and g, the
gravitational constant of Earth.

Within the optimization there exist several methods
to solve such ODE systems. One is the so-called full
discretization, where all states and controls are
calculated for a chosen number of discrete time points.
An alternative is to use multiple shooting methods. Here
the solution space is divided into several sections by so-
called multi-nodes and for each section a single shooting
method is applied. [27] It is sufficient to combine the
sections by additional constraints in order to gain the
correct solution in the end. In the KaNaRiA
implementation the position of the multi-nodes is let
free for optimization.

These methods will be investigated to achieve a
robust and efficient optimization for each of the
systemically different navigation phases of a space
mission. The resulting non-linear high-dimensional
optimization problems are solved using the software
package WORHP [28] (‘We Optimize Really Huge
Problems"). This is especially efficient for solving high-
dimensional problems like those resulting from the
discretization of optimal control problems as it uses for

example the sparsity information of the derivative
matrices.

Additionally, an on-board-capable parametric
sensitivity and stability analysis of optimal nominal
solutions towards perturbations will be performed in
KaNaRiA. Perturbations are for example deviations in
the assumed amount of left over fuel, the magnitude of
the solar pressure or the asteroid's gravitational
influence, which may have a great impact on the
practicability of a planned trajectory. Changes in the
optimal solution of the undisturbed problem in case of
deviating values p from nominal values p, can be
estimated by calculating the solution vector

- dz
z(p) = z(po) + ap o) — po)

while only the nominal solution z(p,) and its
sensitivities Z—; (po) need to be computed.

Whereas offline calculations of optimal trajectories
allow for their investigation, a practical online-
realization can only be achieved through special real-
time capable methods. Based on the parametric
sensitivity analysis and dependent on the different
phases of a space mission and their special claims
different trajectory optimization and real-time tracking
strategies will be developed for differing time scales.
When approaching the asteroid further and especially
when entering the landing phase the challenges of
efficient real-time capable control interventions increase
due to the weak, inhomogeneous gravity field resulting
from the relative small mass, irregular form and
unknown rotation of the asteroid.

Implementation:
A simple way to achieve an orbit transfer is the

Hohmann transfer orbit, but it is only applicable under
strong constraints. That is why in KaNaRiA another
approach was chosen. For the cruise phase a maximum
of three thrust commands may be applied, one at the
beginning of a trajectory, one at the end and one at an
optimized time point in between. These commands are
sufficient regarding the long time frame of the flight
without serious perturbation forces. To model impulsive
thrusting more accurately an application-adapted model
is developed. By using the objective function

with ¢ being the total flight time, m, the spacecraft's
final mass and w,s € [0,1] a weighting factor where any
fit between time- and energy-optimization can be
chosen. The start mass of the spacecraft is 4000 kg, the
fuel mass 1500 kg, the I, 318 seconds and the thrust is
limited to 340 to 440 Newton. The optimization was
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performed considering the influences of the planets
Mars, Saturn and Jupiter. The boundary condition was
meeting the position and velocity of the asteroid within
a certain range sufficient for the cruise phase. The
solutions for full time and full energy optimization can
be seen in Fig. 6 and Table 2. With 2157.56 kg of fuel
consumption and a total flight time of 796.747 days the
flight of the energy-optimal trajectory needs 125.55 kg
of fuel less but 30.493 days longer than flying the time-
optimal trajectory (Table 2). The energy-optimal
trajectory contains two thrust commands whereas the
time-optimal trajectory consists of three thrust
commands in order to meet the objective. This way in
order to meet the energy-optimal objective, the
spacecraft might orbit on the original trajectory before
thrusting for the first time. The changes in the z-position
differs the most since changing the inclination of a
trajectory is highly energy consuming. In comparison to
the Xx-/y-positions, the thrusts lead to only a small
adjustment in the z-position. For both trajectories the
last thrust is applied at the end of the trajectory, whereas
only the time-optimal trajectory has a thrust at the
beginning of the manoeuvre (Fig. 6).

The solution trajectories show strong differences
according to the chosen objective priorities which
means being able to save a lot of mission time or fuel
consumption according to the mission's needs and
allowing for wvarious and considerably different
autonomous decisions.

VI. COGNITIVE SPACECRAFT AUTONOMY

The autonomy module is the central component for
autonomous reasoning and decision-making regarding

normal mission operation as well as emergency
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Fig. 6: X-, y- and z-position in meters of time-optimal (dashed blue
line) and energy-optimal (solid red line) trajectory over time in
days. The dotted black line shows the asteroid's position.
Circles (time-optimal) and squares (energy-optimal) show the
time points of the thrust commands.

w, =0 w, =1 diff
Opt. criterion energy time
Flight time (d) 796.747 766.254 30.493
Fuel (kg) 2157.56 2283.11 125.55
Line color (Fig. 6) red blue

Table 2: Optimization criterion, flight time in days and fuel
consumption in kg for two different mission trajectories.

situations. It controls all sub-modules of the spacecraft
and all processes related to reasoning, plan generation,
plan evaluation, plan execution and FDIR during all
phases of the mission.

During normal mission operation, the autonomy
module monitors both phase-specific mission objectives
and the current state of the spacecraft. Based on these it
generates plans to either achieve primary (e.g. locate the
asteroid using optical sensors, maintain a stable orbit
around the asteroid, perform the docking/landing
operation) or secondary objectives (e.g. calculate
alternative trajectory to further increase information on
possible landing site). As the scenario is of a highly
dynamic nature, the system periodically requests re-
evaluation of plans to check whether they are still
applicable. The appropriate strategy for re-evaluation is
based on current system resources and time constraints.
The autonomy module has to decide on and ensure
commitment to one plan, yet retain the option to
reconsider the commitment at a later point — when new
information becomes available.

Uncertain knowledge resulting from incomplete or
incorrect data poses a central challenge to reasoning and
decision making, therefore the system has to consider
these kind of uncertainties in the decision making
process. Based on the biologically inspired principle of
information maximization, the autonomy module seeks
to minimize and resolve these uncertainties by
employing information gain strategies and active
perception to extend and improve the amount and
quality of the available knowledge.

As autonomous handling of emergency situations is
vital, the module utilizes FDIR algorithms to react to
anomalies as they are detected, by reprioritizing primary
and secondary mission objectives as well as planning
and executing appropriate fault-detection, fault-isolation
and fault-recovery plans.

Situation Analysis and Evaluation

To create a basis for decision-making and plan
generation, the current state of the spacecraft and all
information available to it has to be analysed and
evaluated. This includes a-priori knowledge (spacecraft
configuration, mission phase specific objectives),
internal data (navigation variables, fuel, mass, health
status) and external data (sensor measurements, asteroid
properties, potential targets). Sensor information from
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optical cameras, an imaging LIDAR and a LIDAR
altimeter are provided by the sensor fusion [5] to the
autonomy module and combined to create maps that
assign potentially hazardous areas, points of interest and
potential landing sites to regions on the asteroid. In
addition, boundary conditions for trajectory requests
regarding different mission phases and actions are
added.

Plan Generation, Assessment and Execution

During plan generation, the system decomposes
high-level objectives into a sequence of actions. These
are selected from a dynamic set of currently available
actions and based on the current beliefs of the
spacecraft. At the atomic level, actions can be executed
by the spacecraft actuators, which include spacecraft
propulsion, reaction wheel control, and communication
with other entities, sensor control and deployment of
other vehicles (PTCM orbiter and lander). As the
environment is dynamic, objectives can become
unachievable and thus plans can become obsolete. The
autonomy must be able to assess whether a given plan is
still feasible and react accordingly.

Attitude and Sensor Control

To fulfil phase specific mission objectives that
require distinct sensor and actuator alignments, the
autonomy module has to provide an attitude control
sequence based on both proposed priority rankings of
measurable information and communication
requirements.

This attitude control sequence is based on a
previously calculated trajectory, where a trajectory is
represented as a sequence of positions and time points.
This sequence is split into segments at the control points
of the trajectory. For each of these segments a
spacecraft orientation is calculated for which all
available sensors potentially provide the best
measurements with respect to the maximisation of
gained information.

From these orientations along the trajectory, the
required attitude controls can be determined. Taking
into account the potential information gain and hazards
along this path, a sensor control plan for the trajectory is
calculated, which specifies the sensor activation and
deactivation at all time points.

Autonomous FDIR

To enable the system to autonomously perform fault
detection, isolation and recovery (FDIR), current
knowledge about the spacecraft and the world is used to
infer about possible erroneous states. Algorithms for
anomaly detection are utilized to determine unusual
world- or spacecraft state configurations (e.g.
conflicting datasets, unusual high uncertainty) that
indicate a hard- or software problem. These are

analysed regarding fault-identification and fault-
recovery. If available, information on error-models of
sensors and probabilities for different error scenarios
will be incorporated in this analysis. If one or more
recovery strategies exist, the necessary actions to be
performed and possible constraints on the further action
selection and plan generation (e.g. an actuator ceased to
function) will be evaluated. In addition findings of this
analysis are provided to the sensor fusion to enable this
module to adapt the corresponding sensor models
accordingly.

VII. MASSIVELY PARALLEL AND
PHYSICALLY-BASED SIMULATION

In this section, we highlight two key aspects of
KaNaRiA’s simulation software. First, we give an
overview of our simulation software with a focus on its
novel approach to concurrency control management.
Second, we will present the challenges for our novel
concept of gravity field simulation for irregularly
shaped celestial bodies.

Realistic spacecraft simulations have to cover all
aspects of a mission scenario in real-world detail.
Internal spacecraft components, the space environment
with its physical forces and disturbances, the sensor data
acquisition chain, and the spacecraft actuator and
propulsion systems have to be modelled and simulated.

One key aspect of such simulations is the validation
and testing of specific performance aspects (e.g.
navigation algorithms), enabling sophisticated analyses
for engineers that would otherwise be impossible. These
analyses  (e.g.  spacecraft landing  procedure
performance) require comprehensive simulation and the
monitoring of vast amounts of generated data.

In recent years, simulation has emerged as a key
technology for improving and streamlining the
conceptualisation and design of vehicles by simulation
in “virtual testbeds”. [29,30] Virtual testbeds are
constituted by a sophisticated physically-based
simulation of both the vehicle and its designated
environment, as well as real-time, immersive rendering
and 3D interaction techniques. These testbeds give
engineers the opportunity to interact with the simulated
vehicle in order to gain comprehensive understanding of
possible design flaws as early as possible during the
design process. [29,31]

Consequently, the main challenge of such virtual
end-to-end simulations for space missions is real-time
simulation with highly responsive interactivity while
maintaining realistic physical models. In this context, an
enormous amount of software components is working in
order to simulate both, spacecraft behaviour and
required input data. Additionally, spacecraft engineers
would, ideally, have the ability to easily manipulate
parameters of the spacecraft(s), change aspects of space
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environment such as disturbances, add or remove
sensors or other spacecraft components, and
interactively test the spacecraft(s) under a variety of
conditions.

In order to achieve the above stated software
requirements, we have proposed and implemented the
KaNaRiA virtual simulation (KVS) [32], which
proposes an easily adaptable and customizable
massively-parallel virtual reality system architecture
with a centralized software infrastructure to attain real-
time performance of the overall simulation.

Consequently, KVS enables the analysis and testing
of autonomous spacecraft operation, spacecraft
navigation algorithms, and spacecraft subsystems in an
enriched, virtual world. It leverages physics-based
spacecraft models in conjunction with high-quality,
multimedia visualization and immersive interaction
techniques to form an intuitive, accurate engineering
tool.

KVS has been designed to take advantage of an open
source game engine targeted at the video game industry.
Thus, KVS is able to bridge the gap between traditional,
high-fidelity analysis tools [33] and graphically
realistic, immersive, and interactive simulations.

Some of the highlights of KaNaRiA's virtual
simulation include:

o Real-time 3D rendering of complex space
environments & spacecraft models

o Real-time simulation of spacecraft subsystems,
sensors as well as actuators

e The ability to observe internal spacecraft data
intuitively

o Controlled, repeatable testing for advanced
simulations

e Intuitive and consistent user interface.

Rendering, internal multi-component spacecraft
simulation, and interaction with the overall system
happens completely in parallel in KVS. To avoid any
latency between those parallel software components,
KVS uses our novel concurrency control management
(CCM) for wait-free data exchange, with its core being
a global hash map, called key-value pool (KVPool, Fig.
7). [34,35] The KVPool is a centralized data storage that
maintains the complete shared world state of the
simulation without being a traditional, heavy-weight
database.

Every simulation aspect, such as spacecraft
subsystems, sensors, actuators, and any physical models
are implemented as entities, which can access the
KVPool. Other software components can access the data
by simply passing the key to the KVVPool. The wait-free
behaviour of KVS’s KVPool results in a dramatic
speed-up of several orders of magnitude compared to
traditional lock-based approaches (see Fig. 8), while

KVPair

Local Guarding Atomics

L | Producer

Consumer

Reference Reference

KVPair

Consumer
Reference

Producer
Reference

Fig. 7: Entity-relationship diagram of wait-free access to the
shared simulation state by global guards (left) [34] and local
guards (right). [35]

avoiding all their problems like deadlocks or thread
starvation. Moreover, it overcomes the well-known
many-to-many interface problem of the data-flow-based

approach found in many traditional VR system
architectures.
Furthermore, KVS’s  software infrastructure

facilitates automatic code generation for virtual testbeds
via domain specific modelling. [29] In addition, it can
also be used for other data-driven simulation domains
such as multi-agent-systems. [29]

Testing navigation and autonomous guidance
algorithms for landing and orbiting an asteroid, under
micro-g or milli-g gravity fields is crucial for
developing fail-safe landing procedures. Therefore,
KVS has to simulate a realistic gravity field around an
asteroid for a given shape model (polygonal mesh) and
density distribution at every point in space. We aim for
fast and accurate computation of gravitational fields for
any given asteroid. Currently spherical or ellipsoid
harmonics approaches are the computationally least
inexpensive compared with other approaches.

However, spherical harmonics series diverge within
the Brillouin sphere [36] (see Fig. 9); hence, the
gravitational field computed close to the surface of an
asteroid is inaccurate. [37] This results in incorrect
simulated gravitational forces acting on the spacecraft
during landing phase.

Our Approach

Lock-Based Approach ‘
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Filtered Approach
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Fig. 8: Timings of a combined read and write operation for
massivelv narallel access to a shared data structure.
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Traditional spherical harmonics
gravity field convergence region

Fig. 9 : Brillouin sphere of asteroid Toutatis.

Takahashi et al. [38] overcame this issue with
interior gravity field approach and alternatively with the
interior spherical Bessel gravity field model. [39]

However, the former approach is computationally
expensive as different sets of interior spherical
harmonic coefficients have to be computed separately
for each and every point on the asteroid surface, these
different sets of coefficients are only applicable for
gravity field computation within their respective interior
sphere touching the respective point. [38] On the other
hand, the pre-processing in the latter approach is
computationally very expensive, which is not suitable
for our purposes, since we need to be able to compute
the field for any asteroid during runtime of the
simulator. In our case, we generate the asteroids’ shape
models and density distributions procedurally in order
to test guidance algorithms for landing on different
types of asteroids (with respect to shape and density
distributions) as well as sensor fusion algorithms for
navigation. Therefore, we are currently working on an
approach that computes the gravitational field of an
asteroid in real-time while maintaining fast pre-
processing. In our approach, we basically compute a
sphere packing of a shape model of given asteroid using
the modified protosphere algorithm from Weller et al.
[39,40] with constraint on the radiuses of spheres based
on the known prior asteroid density distribution. This
method produces uniform density spheres that can be
considered as point masses, then computing
gravitational potential/acceleration at any given point is
a trivial scalar/vector summation of
potentials/accelerations applied by each sphere at that
point (see Fig. 10). The sphere packing generation and
summation computation for gravitational
potential/acceleration are parallelizable. Hence, the pre-
processing and gravity field computation are fast, which
are suitable for our computational demands.

~

4

Fig. 10: Sphere packing of an asteroid with density distribution
constraint on radius. The colours indicate different densities
inside the asteroid.

VIII. CONCLUSION AND OUTLOOK

The KaNaRiA project focuses on the development
of new autonomous decision-making, navigation, sensor
fusion and guidance methods implemented on a virtual
spacecraft. Within the spacecraft design, an autonomy
module serves as the central controlling unit managing
the data obtained and created by the navigation, fusion
and guidance, generating and executing plans as well as
controlling the attitude.

As an application for the development of this
approach, an asteroid mining mission concept was
developed. It considered asteroid mining as a long-term
space activity. As the initial mission analysis led to the
decision of a parking orbit located in the asteroid main
belt, all involved mission elements need advanced
autonomy strategies for navigation and guidance as well
as mission planning and operations. During the
KaNaRiA project, the design and application of the
autonomous strategies focuses on the PTCMs consisting
of an orbiter and a re-docking lander designed for a
multi-rendezvous asteroid mission.

The navigation concept was designed for the PTCM
operations  timeline. It enables a thorough
characterization of the asteroid surface properties as
well as mapping including landing site selection with an
envisaged position accuracy of several meters. The
instrument suite to perform inertial-aided optical
navigation under the imposed constraints by the mission
concept was presented and the methods to conduct the
observations were introduced. For cruise navigation, the
navigation system design uses angular observation of
planet chords combined with star-Sun relative Doppler
shift to obtain the spacecraft position and velocity. The
main selected bodies are Jupiter, the Sun and Earth with
the option to consider other planets depending on their
illumination conditions. The spacecraft radial velocity is
calculated using the optical Doppler frequency shift
measurement from the Sun and combined with planet
chord length angles, planet star and Sun-star angles to
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determine position. The latter measurements are
processed in an unscented Kalman filter whose results
are used for timely state updates for the particle filter
running in parallel. The Kalman filter ensures a robust
estimation for mismodelled dynamic environments (e.g.
vicinity of asteroids) such as an unprobed gravity field.
For the purpose of relative navigation, two optical
cameras and 3D LIDAR are used for feature tracking,
optical navigation and independent height and vertical
speed reconstruction during descent.

Based on the data obtained by the navigation sensor
suite, the multi-sensor fusion subsystem provides all
necessary information for cognitive autonomous
decision-making. The data is obtained by a particle
filter-based SLAM approach with a combination of a
landmark-based map with a belief-function-based grid-
map. The spacecraft dynamic state and the
corresponding maps of the asteroid are estimated with a
level of detail corresponding to the respective mission
phase. This approach is applicable in every exploration
scenario where an autonomous agent has to estimate its
own position in an unknown environment and map it at
the same time. Furthermore, the uncertainties encoded
in the map enable an autonomous system to take
cognitive decisions.

The challenge of finding the right interplanetary
trajectory is solved using optimal control methods from
the mathematical field. In KaNaRiA, the implemented
approach allows a maximum of three thrust commands,
one at the beginning, one at the end and one at an
optimized time point in between. A weighting factor
allows a customized fit between time- and energy-
optimization. Using the optimal nominal solution as
baseline, a parametric sensitivity analysis towards
perturbations will be performed. Based on the
parametric sensitivity analysis and according to the need
for optimality, robustness and calculation time at hand,
three real-time capable optimal control methods will be
implemented: a method for model-predictive control
(MPC), a method for repeated adjustment and an
optimal feedback controller. Additionally, the approach
of modelling the spacecraft motion will be applied to
the task of navigation on the asteroid’s surface to
investigate an adaptive autonomous consideration of
state-space constraints.

Analysing and evaluating the data obtained by
navigation, fusion and guidance as well as other
information available, the autonomy module assesses
the current state of the spacecraft. The module acts as
central component for autonomous reasoning and
decision-making. The situation assessment is used as
input for the decision on the feasibility of applicable
mission objectives. Mission objectives are broken down
into a sequence of actions, which are used to generate a
plan. Due to a dynamic environment, the objectives
could become unachievable depending on the spacecraft

or environment state. With a changing environment,
periodic requests of plan re-evaluations are necessary to
either ensure commitment or reconsideration. The
autonomy module also takes into account the
uncertainty of the obtained knowledge using
biologically inspired principles such as information
maximisation and active perception. Finally, the
execution of the plan is based on the trajectory
optimization of the guidance subsystem. Using given
time and control points, the actuators can be
commanded. Based on the known attitude, a sensor
control plan can be generated to specify their de-
/activation schedule. Last but not least, erroneous states
are inferred from the current knowledge of the
spacecraft and world state utilizing anomaly detection
algorithms for FDIR. All in all, the methods and
algorithms developed in this project can be used to
enhance the level of autonomy of future space missions
with regards to navigation, plan generation, action
selection and FDIR. The system provides the ability to
represent uncertainty and incorporate this knowledge
into the plan generation step. It can modify existing
plans to include utility objectives aiming on reducing
uncertainty and therefore enhances the robustness of the
system with respect to unexpected situations.

The developed autonomy and navigation methods
and algorithms are tested and verified in the KaNaRiA
virtual simulator (KVS) using the mission scenario of
asteroid mining as application. The KVS uses our novel
concurrency control management approach with wait-
free data exchange between various software
components. A centralized data storage called KVPool
is used, which resolves the many-to-many interface
problem typically encountered in traditional VR
architectures. This wait-free approach outperformed
standard approaches in terms of access time as shown in
the Fig. 8. The above software infrastructure can also be
applied in other data-driven simulation domains.
Currently, we are experimenting on a new approach for
generating gravity field of asteroid shape models, which
is based on sphere packing method [32]. This approach
considers variable densities and overcomes the gravity
field divergence problem in the Brillouin sphere region
(see Fig. 9). However, at the same time our method also
focuses on a fast computation of gravity potential and
acceleration, and on fast generation of pre-processed
data used for computing gravity fields.

The KaNaRiA project had its project kick-off in
October 2013 and is designated for a period of four
years.
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